SchoolWork-LaTeX/离散数学/作业/第四周作业.tex

80 lines
3.4 KiB
TeX
Raw Normal View History

2024-09-02 17:47:53 +08:00
\documentclass[全部作业]{subfiles}
\pagestyle{fancyplain}
\fancyhead{}
\fancyhead[C]{\mysignature}
\setcounter{chapter}{3}
\setcounter{section}{2}
\begin{document}
\section{范式和联结词的功能完备集}
\begin{enumerate}
\item 通过等值演算求$p \to (p\land (q \to p))$的主析取范式和主合取范式。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
p \to (p \land (q \to p))&=\lnot p\lor (p\land (\lnot q\lor p))=\lnot p\lor ((p\lor 0)\land (p\lor \lnot q)) \\
&=\lnot p \lor (p\lor (0 \land \lnot q)) = \lnot p \lor p = 1 \\
&=(p\land q)\lor (p\land \lnot q)\lor (\lnot p\land q)\lor (\lnot p\land \lnot q) \qquad (主析取范式)\\
\end{aligned}
$$
$$
因为原式为永真式,所以无主合取范式。
$$
\end{zhongwen}
\end{proof}
\item 证明$\{ \lnot ,\to \}$是功能完备集。
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\lnot p=\lnot p \\
&p\lor q=\lnot p \to q \\
&\because \{ \lnot ,\lor \}是功能完备集 \\
&\therefore \{ \lnot ,\to \}是功能完备集 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\section{命题逻辑的推理理论}
\begin{enumerate}
\item 证明$p \to (q \to s),q,p\lor \lnot r \Rightarrow r \to s$
\begin{proof}
\begin{zhongwen}
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $r$\hfill 附加前提引入
\item $p\lor \lnot r$ \hfill 前提引入
\item $p$\hfill \mycircle{1}\mycircle{2}析取三段论
\item $p \to (q \to s)$\hfill 前提引入
\item $q \to s$\hfill \mycircle{3}\mycircle{4}假言推理
\item $q$ \hfill 前提引入
\item $s$ \hfill \mycircle{5}\mycircle{6}假言推理
\end{enumerate}
\end{zhongwen}
\end{proof}
\item 构造下列推理的形式证明:
“今天下午没有出太阳并且今天比昨天冷。只有今天下午出太阳,我们才去游泳。若我们不去游泳,则我们乘独木舟游览。若我们乘独木舟游览,则我们在黄昏时回家。 所以,我们在黄昏时回家。”
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&p:今天下午出太阳q:今天比昨天冷r:我们去游泳, \\
&s:我们乘独木舟游览t:我们在黄昏时回家 \\
&则需要证明:\lnot p \land q,r \to p,\lnot r \to s, s \to t \Rightarrow t \\
\end{aligned}
$$
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $\lnot p\land q$\hfill 前提引入
\item $\lnot p$\hfill \mycircle{1}化简
\item $r \to p$\hfill 前提引入
\item $\lnot r$\hfill \mycircle{2}\mycircle{3}拒取式
\item $\lnot r \to s$\hfill 前提引入
\item $s$\hfill \mycircle{4}\mycircle{5}假言推理
\item $s \to t$\hfill 前提引入
\item $t$\hfill \mycircle{6}\mycircle{7}假言推理
\end{enumerate}
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}