mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-15 08:08:09 +08:00
110 lines
5.0 KiB
Python
110 lines
5.0 KiB
Python
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from ...extras.logging import get_logger
|
|
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import ProcessorMixin
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
from ...hparams import DataArguments
|
|
from ..template import Template
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def preprocess_pairwise_dataset(
|
|
examples: Dict[str, List[Any]],
|
|
template: "Template",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
data_args: "DataArguments",
|
|
) -> Dict[str, List[List[int]]]:
|
|
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
|
model_inputs = {
|
|
"chosen_input_ids": [],
|
|
"chosen_attention_mask": [],
|
|
"chosen_labels": [],
|
|
"rejected_input_ids": [],
|
|
"rejected_attention_mask": [],
|
|
"rejected_labels": [],
|
|
}
|
|
if processor is not None:
|
|
model_inputs["pixel_values"] = []
|
|
if hasattr(processor, "image_seq_length"): # paligemma models
|
|
model_inputs["chosen_token_type_ids"] = []
|
|
model_inputs["rejected_token_type_ids"] = []
|
|
|
|
for i in range(len(examples["prompt"])):
|
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
|
continue
|
|
|
|
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
|
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
|
|
|
|
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
|
|
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
|
|
prompt_ids, chosen_ids = template.encode_oneturn(
|
|
tokenizer,
|
|
chosen_messages,
|
|
examples["system"][i],
|
|
examples["tools"][i],
|
|
data_args.cutoff_len,
|
|
data_args.reserved_label_len,
|
|
)
|
|
_, rejected_ids = template.encode_oneturn(
|
|
tokenizer,
|
|
rejected_messages,
|
|
examples["system"][i],
|
|
examples["tools"][i],
|
|
data_args.cutoff_len,
|
|
data_args.reserved_label_len,
|
|
)
|
|
|
|
if template.efficient_eos:
|
|
chosen_ids += [tokenizer.eos_token_id]
|
|
rejected_ids += [tokenizer.eos_token_id]
|
|
|
|
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
|
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
|
|
|
chosen_input_ids = prompt_ids + chosen_ids
|
|
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
|
rejected_input_ids = prompt_ids + rejected_ids
|
|
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
|
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
|
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
|
model_inputs["chosen_labels"].append(chosen_labels)
|
|
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
|
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
|
model_inputs["rejected_labels"].append(rejected_labels)
|
|
if processor is not None:
|
|
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
|
if hasattr(processor, "image_seq_length"): # paligemma models
|
|
model_inputs["chosen_token_type_ids"].append(
|
|
get_paligemma_token_type_ids(len(chosen_input_ids), processor)
|
|
)
|
|
model_inputs["rejected_token_type_ids"].append(
|
|
get_paligemma_token_type_ids(len(rejected_input_ids), processor)
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
|
|
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
|
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
|
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
|
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
|
print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False)))
|
|
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
|
print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)))
|
|
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
|
print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)))
|
|
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
|
print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))
|