from typing import TYPE_CHECKING, Any, Dict, List, Optional from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .processor_utils import get_paligemma_token_type_ids, get_pixel_values if TYPE_CHECKING: from transformers import ProcessorMixin from transformers.tokenization_utils import PreTrainedTokenizer from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def preprocess_pairwise_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build input pairs with format ` X`, `Y1 ` and `Y2 ` model_inputs = { "chosen_input_ids": [], "chosen_attention_mask": [], "chosen_labels": [], "rejected_input_ids": [], "rejected_attention_mask": [], "rejected_labels": [], } if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["chosen_token_type_ids"] = [] model_inputs["rejected_token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"] chosen_messages = examples["prompt"][i] + [examples["response"][i][0]] rejected_messages = examples["prompt"][i] + [examples["response"][i][1]] prompt_ids, chosen_ids = template.encode_oneturn( tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len, data_args.reserved_label_len, ) _, rejected_ids = template.encode_oneturn( tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len, data_args.reserved_label_len, ) if template.efficient_eos: chosen_ids += [tokenizer.eos_token_id] rejected_ids += [tokenizer.eos_token_id] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids chosen_input_ids = prompt_ids + chosen_ids chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids rejected_input_ids = prompt_ids + rejected_ids rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids model_inputs["chosen_input_ids"].append(chosen_input_ids) model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids)) model_inputs["chosen_labels"].append(chosen_labels) model_inputs["rejected_input_ids"].append(rejected_input_ids) model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids)) model_inputs["rejected_labels"].append(rejected_labels) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["chosen_token_type_ids"].append( get_paligemma_token_type_ids(len(chosen_input_ids), processor) ) model_inputs["rejected_token_type_ids"].append( get_paligemma_token_type_ids(len(rejected_input_ids), processor) ) return model_inputs def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"])) valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"])) print("chosen_input_ids:\n{}".format(example["chosen_input_ids"])) print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))) print("chosen_label_ids:\n{}".format(example["chosen_labels"])) print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False))) print("rejected_input_ids:\n{}".format(example["rejected_input_ids"])) print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False))) print("rejected_label_ids:\n{}".format(example["rejected_labels"])) print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))