hiyouga f769c2d3fc update web UI, support rm predict #210
Former-commit-id: ed0e186a134de816d6a9278f4e47baa6250a52d1
2023-07-21 13:27:27 +08:00

69 lines
2.5 KiB
Python

import os
import json
import torch
from typing import Dict, List, Optional, Tuple, Union
from transformers.trainer import PredictionOutput
from transformers.modeling_utils import PreTrainedModel
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.trainer import PeftTrainer
logger = get_logger(__name__)
class PairwisePeftTrainer(PeftTrainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.can_return_loss = True # override property to return eval_loss
def compute_loss(
self,
model: PreTrainedModel,
inputs: Dict[str, torch.Tensor],
return_outputs: Optional[bool] = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
We use score on the EOS token to represent reward of the whole sentence.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
batch_size = inputs["input_ids"].size(0) // 2
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss
def save_predictions(
self,
predict_results: PredictionOutput
) -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
acc_scores, rej_scores = predict_results.predictions
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for acc_score, rej_score in zip(acc_scores, rej_scores):
res.append(json.dumps({"accept": round(float(acc_score), 2), "reject": round(float(rej_score), 2)}))
writer.write("\n".join(res))