import os import json import torch from typing import Dict, List, Optional, Tuple, Union from transformers.trainer import PredictionOutput from transformers.modeling_utils import PreTrainedModel from llmtuner.extras.logging import get_logger from llmtuner.tuner.core.trainer import PeftTrainer logger = get_logger(__name__) class PairwisePeftTrainer(PeftTrainer): r""" Inherits PeftTrainer to compute pairwise loss. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.can_return_loss = True # override property to return eval_loss def compute_loss( self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs: Optional[bool] = False ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]: r""" Computes pairwise loss. The first n examples are chosen and the last n examples are rejected. We use score on the EOS token to represent reward of the whole sentence. Subclass and override to inject custom behavior. It should not be directly used by external scripts. Note that the first element will be removed from the output tuple. See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509 """ batch_size = inputs["input_ids"].size(0) // 2 _, _, values = model(**inputs, output_hidden_states=True, return_dict=True) r_accept, r_reject = values[:, -1].split(batch_size, dim=0) loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean() return (loss, [loss, r_accept, r_reject]) if return_outputs else loss def save_predictions( self, predict_results: PredictionOutput ) -> None: r""" Saves model predictions to `output_dir`. A custom behavior that not contained in Seq2SeqTrainer. """ if not self.is_world_process_zero(): return output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") logger.info(f"Saving prediction results to {output_prediction_file}") acc_scores, rej_scores = predict_results.predictions with open(output_prediction_file, "w", encoding="utf-8") as writer: res: List[str] = [] for acc_score, rej_score in zip(acc_scores, rej_scores): res.append(json.dumps({"accept": round(float(acc_score), 2), "reject": round(float(rej_score), 2)})) writer.write("\n".join(res))