BUAADreamer e6cf251fb8 modify style
Former-commit-id: 1dcabafe72fe21c7f9122a6bc1a1ccc4f5d08fdd
2024-04-25 21:15:16 +08:00

40 lines
1.4 KiB
Python

from types import MethodType
from typing import TYPE_CHECKING, Optional
import torch
from transformers import Seq2SeqTrainer
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)