from types import MethodType from typing import TYPE_CHECKING, Optional import torch from transformers import Seq2SeqTrainer from ...extras.logging import get_logger from ..utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: from ...hparams import FinetuningArguments logger = get_logger(__name__) class CustomSeq2SeqTrainer(Seq2SeqTrainer): r""" Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. """ def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None: super().__init__(**kwargs) self.finetuning_args = finetuning_args if finetuning_args.use_badam: from badam import clip_grad_norm_for_sparse_tensor self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer)