mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 04:02:49 +08:00
77 lines
3.0 KiB
Python
77 lines
3.0 KiB
Python
from typing import Any, Dict, Literal, Optional
|
|
from dataclasses import asdict, dataclass, field
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
r"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
|
|
"""
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier "
|
|
"from huggingface.co/models or modelscope.cn/models."}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
|
|
)
|
|
use_fast_tokenizer: Optional[bool] = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
|
|
)
|
|
split_special_tokens: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}
|
|
)
|
|
model_revision: Optional[str] = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
|
|
)
|
|
quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the model."}
|
|
)
|
|
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
|
|
default="nf4",
|
|
metadata={"help": "Quantization data type to use in int4 training."}
|
|
)
|
|
double_quantization: Optional[bool] = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use double quantization in int4 training or not."}
|
|
)
|
|
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
|
default=None,
|
|
metadata={"help": "Adopt scaled rotary positional embeddings."}
|
|
)
|
|
checkpoint_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory(s) containing the model checkpoints as well as the configurations."}
|
|
)
|
|
flash_attn: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Enable FlashAttention-2 for faster training."}
|
|
)
|
|
shift_attn: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
|
|
)
|
|
hf_hub_token: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Auth token to log in with Hugging Face Hub."}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
self.compute_dtype = None
|
|
self.model_max_length = None
|
|
|
|
if self.split_special_tokens and self.use_fast_tokenizer:
|
|
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
|
|
|
if self.checkpoint_dir is not None: # support merging multiple lora weights
|
|
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
|
|
|
|
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
return asdict(self)
|