from typing import Any, Dict, Literal, Optional from dataclasses import asdict, dataclass, field @dataclass class ModelArguments: r""" Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier " "from huggingface.co/models or modelscope.cn/models."} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} ) use_fast_tokenizer: Optional[bool] = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ) split_special_tokens: Optional[bool] = field( default=False, metadata={"help": "Whether or not the special tokens should be split during the tokenization process."} ) model_revision: Optional[str] = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model."} ) quantization_type: Optional[Literal["fp4", "nf4"]] = field( default="nf4", metadata={"help": "Quantization data type to use in int4 training."} ) double_quantization: Optional[bool] = field( default=True, metadata={"help": "Whether to use double quantization in int4 training or not."} ) rope_scaling: Optional[Literal["linear", "dynamic"]] = field( default=None, metadata={"help": "Adopt scaled rotary positional embeddings."} ) checkpoint_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory(s) containing the model checkpoints as well as the configurations."} ) flash_attn: Optional[bool] = field( default=False, metadata={"help": "Enable FlashAttention-2 for faster training."} ) shift_attn: Optional[bool] = field( default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."} ) hf_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."} ) def __post_init__(self): self.compute_dtype = None self.model_max_length = None if self.split_special_tokens and self.use_fast_tokenizer: raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") if self.checkpoint_dir is not None: # support merging multiple lora weights self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." def to_dict(self) -> Dict[str, Any]: return asdict(self)