LLaMA-Factory/tests/data/test_supervised.py
hiyouga ce40d12692 release v0.8.0
Former-commit-id: 5aa4ce47567146cd97c61623018153b41d7c1278
2024-06-08 05:20:54 +08:00

45 lines
1.5 KiB
Python

import os
import pytest
from datasets import load_dataset
from llamafactory.data import get_dataset
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
TRAINING_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "full",
"dataset": "llamafactory/tiny_dataset",
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
@pytest.mark.parametrize("test_num", [5])
def test_supervised(test_num: int):
model_args, data_args, training_args, _, _ = get_train_args(TRAINING_ARGS)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
original_data = load_dataset(TRAINING_ARGS["dataset"], split="train")
for test_idx in range(test_num):
decode_result = tokenizer.decode(tokenized_data["input_ids"][test_idx])
messages = [
{"role": "user", "content": original_data[test_idx]["instruction"]},
{"role": "assistant", "content": original_data[test_idx]["output"]},
]
templated_result = tokenizer.apply_chat_template(messages, tokenize=False)
assert decode_result == templated_result