import os import pytest from datasets import load_dataset from llamafactory.data import get_dataset from llamafactory.hparams import get_train_args from llamafactory.model import load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM") TRAINING_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "full", "dataset": "llamafactory/tiny_dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } @pytest.mark.parametrize("test_num", [5]) def test_supervised(test_num: int): model_args, data_args, training_args, _, _ = get_train_args(TRAINING_ARGS) tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) original_data = load_dataset(TRAINING_ARGS["dataset"], split="train") for test_idx in range(test_num): decode_result = tokenizer.decode(tokenized_data["input_ids"][test_idx]) messages = [ {"role": "user", "content": original_data[test_idx]["instruction"]}, {"role": "assistant", "content": original_data[test_idx]["output"]}, ] templated_result = tokenizer.apply_chat_template(messages, tokenize=False) assert decode_result == templated_result