mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-22 22:02:51 +08:00
136 lines
6.0 KiB
Python
136 lines
6.0 KiB
Python
from collections import defaultdict
|
|
from types import MethodType
|
|
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import Trainer
|
|
from trl import DPOTrainer
|
|
from trl.trainer.utils import disable_dropout_in_model
|
|
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from ..utils import create_custom_optimzer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, ProcessorMixin
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
class CustomORPOTrainer(DPOTrainer):
|
|
def __init__(
|
|
self,
|
|
model: Union["PreTrainedModel", "torch.nn.Module"],
|
|
finetuning_args: "FinetuningArguments",
|
|
processor: Optional["ProcessorMixin"],
|
|
disable_dropout: bool = True,
|
|
**kwargs,
|
|
):
|
|
if disable_dropout:
|
|
disable_dropout_in_model(model)
|
|
|
|
self.finetuning_args = finetuning_args
|
|
self.processor = processor
|
|
self.reference_free = False
|
|
self.use_dpo_data_collator = True # hack to avoid warning
|
|
self.generate_during_eval = False # disable at evaluation
|
|
self.label_pad_token_id = IGNORE_INDEX
|
|
self.padding_value = 0
|
|
self.is_encoder_decoder = model.config.is_encoder_decoder
|
|
self.precompute_ref_log_probs = False
|
|
self._precomputed_train_ref_log_probs = False
|
|
self._precomputed_eval_ref_log_probs = False
|
|
self._peft_has_been_casted_to_bf16 = False
|
|
|
|
self.beta = finetuning_args.orpo_beta
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
|
|
|
Trainer.__init__(self, model=model, **kwargs)
|
|
if finetuning_args.use_badam:
|
|
from badam import clip_grad_norm_for_sparse_tensor
|
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
|
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
|
super()._save(output_dir, state_dict)
|
|
if self.processor is not None:
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
|
|
|
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
|
r"""
|
|
Computes ORPO's odds ratio (OR) loss.
|
|
"""
|
|
log_odds = (chosen_logps - rejected_logps) - (
|
|
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
|
)
|
|
odds_ratio_loss = -F.logsigmoid(log_odds)
|
|
return odds_ratio_loss
|
|
|
|
def concatenated_forward(
|
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
|
r"""
|
|
Computes the average log probabilities of the labels under the given logits.
|
|
"""
|
|
all_logits: "torch.Tensor" = model(
|
|
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True, use_cache=False
|
|
).logits.to(torch.float32)
|
|
|
|
all_logps = self.get_batch_logps(
|
|
logits=all_logits,
|
|
labels=batch["labels"],
|
|
average_log_prob=True,
|
|
is_encoder_decoder=self.is_encoder_decoder,
|
|
label_pad_token_id=self.label_pad_token_id,
|
|
)
|
|
batch_size = batch["input_ids"].size(0) // 2
|
|
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
|
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
|
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
|
|
|
def get_batch_loss_metrics(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
batch: Dict[str, "torch.Tensor"],
|
|
train_eval: Literal["train", "eval"] = "train",
|
|
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
|
r"""
|
|
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
|
|
"""
|
|
metrics = {}
|
|
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
|
|
sft_loss = -chosen_logps
|
|
odds_ratio_loss = self.odds_ratio_loss(chosen_logps, rejected_logps)
|
|
batch_loss = (sft_loss + self.beta * odds_ratio_loss).mean()
|
|
|
|
chosen_rewards = self.beta * chosen_logps.detach()
|
|
rejected_rewards = self.beta * rejected_logps.detach()
|
|
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
|
|
|
prefix = "eval_" if train_eval == "eval" else ""
|
|
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
|
|
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
|
|
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
|
|
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
|
|
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().mean().cpu()
|
|
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().mean().cpu()
|
|
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().mean().cpu()
|
|
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().mean().cpu()
|
|
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
|
metrics["{}odds_ratio_loss".format(prefix)] = odds_ratio_loss.detach().mean().cpu()
|
|
|
|
return batch_loss, metrics
|