from collections import defaultdict from types import MethodType from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union import torch import torch.nn.functional as F from transformers import Trainer from trl import DPOTrainer from trl.trainer.utils import disable_dropout_in_model from ...extras.constants import IGNORE_INDEX from ..utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: from transformers import PreTrainedModel, ProcessorMixin from ...hparams import FinetuningArguments class CustomORPOTrainer(DPOTrainer): def __init__( self, model: Union["PreTrainedModel", "torch.nn.Module"], finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], disable_dropout: bool = True, **kwargs, ): if disable_dropout: disable_dropout_in_model(model) self.finetuning_args = finetuning_args self.processor = processor self.reference_free = False self.use_dpo_data_collator = True # hack to avoid warning self.generate_during_eval = False # disable at evaluation self.label_pad_token_id = IGNORE_INDEX self.padding_value = 0 self.is_encoder_decoder = model.config.is_encoder_decoder self.precompute_ref_log_probs = False self._precomputed_train_ref_log_probs = False self._precomputed_eval_ref_log_probs = False self._peft_has_been_casted_to_bf16 = False self.beta = finetuning_args.orpo_beta self._stored_metrics = defaultdict(lambda: defaultdict(list)) Trainer.__init__(self, model=model, **kwargs) if finetuning_args.use_badam: from badam import clip_grad_norm_for_sparse_tensor self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None: super()._save(output_dir, state_dict) if self.processor is not None: output_dir = output_dir if output_dir is not None else self.args.output_dir getattr(self.processor, "image_processor").save_pretrained(output_dir) def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": r""" Computes ORPO's odds ratio (OR) loss. """ log_odds = (chosen_logps - rejected_logps) - ( torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps)) ) odds_ratio_loss = -F.logsigmoid(log_odds) return odds_ratio_loss def concatenated_forward( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: r""" Computes the average log probabilities of the labels under the given logits. """ all_logits: "torch.Tensor" = model( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True, use_cache=False ).logits.to(torch.float32) all_logps = self.get_batch_logps( logits=all_logits, labels=batch["labels"], average_log_prob=True, is_encoder_decoder=self.is_encoder_decoder, label_pad_token_id=self.label_pad_token_id, ) batch_size = batch["input_ids"].size(0) // 2 chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) return chosen_logps, rejected_logps, chosen_logits, rejected_logits def get_batch_loss_metrics( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], train_eval: Literal["train", "eval"] = "train", ) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: r""" Computes the ORPO loss and other metrics for the given batch of inputs for train or test. """ metrics = {} chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch) sft_loss = -chosen_logps odds_ratio_loss = self.odds_ratio_loss(chosen_logps, rejected_logps) batch_loss = (sft_loss + self.beta * odds_ratio_loss).mean() chosen_rewards = self.beta * chosen_logps.detach() rejected_rewards = self.beta * rejected_logps.detach() reward_accuracies = (chosen_rewards > rejected_rewards).float() prefix = "eval_" if train_eval == "eval" else "" metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu() metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu() metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu() metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu() metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().mean().cpu() metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().mean().cpu() metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().mean().cpu() metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().mean().cpu() metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu() metrics["{}odds_ratio_loss".format(prefix)] = odds_ratio_loss.detach().mean().cpu() return batch_loss, metrics