Files
LLaMA-Factory/src/llamafactory/v1/plugins/model_plugins/peft.py
2025-12-14 11:50:52 +08:00

58 lines
1.7 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Literal, Optional, TypedDict
from peft import LoraConfig, PeftModel, get_peft_model
from ...utils.plugin import BasePlugin
from ...utils.types import HFModel
class LoraConfigDict(TypedDict, total=False):
name: Literal["lora"]
"""Plugin name."""
r: int
"""Lora rank."""
lora_alpha: int
"""Lora alpha."""
target_modules: list[str]
"""Target modules."""
class FreezeConfigDict(TypedDict, total=False):
name: Literal["freeze"]
"""Plugin name."""
freeze_trainable_layers: int
"""Freeze trainable layers."""
freeze_trainable_modules: Optional[list[str]]
"""Freeze trainable modules."""
class PeftPlugin(BasePlugin):
def __call__(self, model: HFModel, config: dict, is_train: bool) -> HFModel:
return super().__call__(model, config)
@PeftPlugin("lora").register
def get_lora_model(model: HFModel, config: LoraConfigDict, is_train: bool) -> PeftModel:
peft_config = LoraConfig(**config)
model = get_peft_model(model, peft_config)
return model
@PeftPlugin("freeze").register
def get_freeze_model(model: HFModel, config: FreezeConfigDict, is_train: bool) -> HFModel:
raise NotImplementedError()