# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Literal, Optional, TypedDict from peft import LoraConfig, PeftModel, get_peft_model from ...utils.plugin import BasePlugin from ...utils.types import HFModel class LoraConfigDict(TypedDict, total=False): name: Literal["lora"] """Plugin name.""" r: int """Lora rank.""" lora_alpha: int """Lora alpha.""" target_modules: list[str] """Target modules.""" class FreezeConfigDict(TypedDict, total=False): name: Literal["freeze"] """Plugin name.""" freeze_trainable_layers: int """Freeze trainable layers.""" freeze_trainable_modules: Optional[list[str]] """Freeze trainable modules.""" class PeftPlugin(BasePlugin): def __call__(self, model: HFModel, config: dict, is_train: bool) -> HFModel: return super().__call__(model, config) @PeftPlugin("lora").register def get_lora_model(model: HFModel, config: LoraConfigDict, is_train: bool) -> PeftModel: peft_config = LoraConfig(**config) model = get_peft_model(model, peft_config) return model @PeftPlugin("freeze").register def get_freeze_model(model: HFModel, config: FreezeConfigDict, is_train: bool) -> HFModel: raise NotImplementedError()