hiyouga a78cd5c5ad fix qwen template
Former-commit-id: ed216bbc4693860eaf27c2a95108f705d530cbdb
2024-01-05 16:14:56 +08:00

808 lines
19 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import tiktoken
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
logger = get_logger(__name__)
@dataclass
class Template:
prefix: List[Union[str, Dict[str, str]]]
prompt: List[Union[str, Dict[str, str]]]
system: str
sep: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
efficient_eos: bool
replace_eos: bool
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids = prompt_ids + query_ids + resp_ids
prompt_ids = prompt_ids + encoded_pairs[-1][0]
answer_ids = encoded_pairs[-1][1]
return prompt_ids, answer_ids
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
return encoded_pairs
def _format(
self,
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None
) -> Tuple[str, List[Tuple[str, str]]]:
r"""
Aligns inputs to the standard format.
"""
system = system or self.system # use system if provided
history = history if (history and self.use_history) else []
history = history + [(query, resp)]
return system, history
def _get_special_ids(
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else: # baichuan, gpt2, qwen, yi models have no bos token
bos_ids = []
if tokenizer.eos_token_id is None:
raise ValueError("EOS token is required.")
if self.efficient_eos:
eos_ids = []
else:
eos_ids = [tokenizer.eos_token_id]
return bos_ids, eos_ids
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
system: str,
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + sep + query resp + eos
Turn t: sep + bos + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system)
if len(prefix_ids) != 0: # has prefix
prefix_ids = bos_ids + prefix_ids + sep_ids
else:
prefix_ids = bos_ids
else:
prefix_ids = sep_ids + bos_ids
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx+1))
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
def _convert_inputs_to_ids(
self,
tokenizer: "PreTrainedTokenizer",
context: List[Union[str, Dict[str, str]]],
system: Optional[str] = None,
query: Optional[str] = None,
idx: Optional[str] = None
) -> List[int]:
r"""
Converts context to token ids.
"""
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
token_ids = []
for elem in context:
if isinstance(elem, str):
elem = elem.replace("{{system}}", system, 1) if system is not None else elem
elem = elem.replace("{{query}}", query, 1) if query is not None else elem
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem
if len(elem) != 0:
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
else:
raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem)))
return token_ids
@dataclass
class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
system: str,
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + query resp + eos
Turn t: bos + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0: # llama2 template has no sep_ids
query = self.prefix[0].replace("{{system}}", system) + query
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
templates: Dict[str, Template] = {}
def register_template(
name: str,
prefix: List[Union[str, Dict[str, str]]],
prompt: List[Union[str, Dict[str, str]]],
system: str,
sep: List[Union[str, Dict[str, str]]],
stop_words: Optional[List[str]] = [],
use_history: Optional[bool] = True,
efficient_eos: Optional[bool] = False,
replace_eos: Optional[bool] = False
) -> None:
template_class = Llama2Template if name.startswith("llama2") else Template
templates[name] = template_class(
prefix=prefix,
prompt=prompt,
system=system,
sep=sep,
stop_words=stop_words,
use_history=use_history,
efficient_eos=efficient_eos,
replace_eos=replace_eos
)
def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
if tokenizer.eos_token_id is None:
tokenizer.eos_token = "<|endoftext|>"
logger.info("Add eos token: {}".format(tokenizer.eos_token))
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
if name is None: # for pre-training
return None
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
stop_words = template.stop_words
if template.replace_eos:
if not stop_words:
raise ValueError("Stop words are required to replace the EOS token.")
tokenizer.eos_token = stop_words[0]
stop_words = stop_words[1:]
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
if stop_words:
tokenizer.add_special_tokens(
dict(additional_special_tokens=stop_words),
replace_additional_special_tokens=False
)
logger.info("Add {} to stop words.".format(",".join(stop_words)))
return template
register_template(
name="alpaca",
prefix=[
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n\n### Response:\n"
],
system=(
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
),
sep=[
"\n\n"
]
)
register_template(
name="aquila",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}###Assistant:"
],
system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
sep=[
"###"
],
stop_words=[
"</s>"
],
efficient_eos=True
)
register_template(
name="baichuan",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_102>"}, # user token
"{{query}}",
{"token": "<reserved_103>"} # assistant token
],
system="",
sep=[],
efficient_eos=True
)
register_template(
name="baichuan2",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_106>"}, # user token
"{{query}}",
{"token": "<reserved_107>"} # assistant token
],
system="",
sep=[],
efficient_eos=True
)
register_template(
name="belle",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nBelle: "
],
system="",
sep=[
"\n\n"
]
)
register_template(
name="bluelm",
prefix=[
"{{system}}"
],
prompt=[
{"token": "[|Human|]:"},
"{{query}}",
{"token": "[|AI|]:"}
],
system="",
sep=[]
)
register_template(
name="chatglm2",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{system}}"
],
prompt=[
"[Round {{idx}}]\n\n问:{{query}}\n\n答:"
],
system="",
sep=[
"\n\n"
],
efficient_eos=True
)
register_template(
name="chatglm3",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{system}}"
],
prompt=[
{"token": "<|user|>"},
"\n",
"{{query}}",
{"token": "<|assistant|>"},
"\n" # add an extra newline to avoid error in ChatGLM's process_response method
],
system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
sep=[],
stop_words=[
"<|user|>",
"<|observation|>"
],
efficient_eos=True
)
register_template(
name="chatglm3_raw", # the raw template for tool tuning
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{system}}"
],
prompt=[
{"token": "<|user|>"},
"\n",
"{{query}}",
{"token": "<|assistant|>"}
],
system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
sep=[],
stop_words=[
"<|user|>",
"<|observation|>"
],
efficient_eos=True
)
register_template(
name="codegeex2",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{system}}"
],
prompt=[
"{{query}}"
],
system="",
sep=[]
)
register_template(
name="deepseek",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\n\nAssistant:"
],
system="",
sep=[]
)
register_template(
name="deepseekcoder",
prefix=[
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n### Response:\n"
],
system=(
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
"developed by Deepseek Company, and you only answer questions related to computer science. "
"For politically sensitive questions, security and privacy issues, "
"and other non-computer science questions, you will refuse to answer\n"
),
sep=[
"\n",
{"token": "<|EOT|>"},
"\n"
],
stop_words=[
"<|EOT|>"
],
efficient_eos=True
)
register_template(
name="default",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant:"
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[
"\n"
]
)
register_template(
name="falcon",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\nFalcon:"
],
system="",
sep=[
"\n"
],
efficient_eos=True
)
register_template(
name="intern",
prefix=[
"{{system}}"
],
prompt=[
"<|User|>:{{query}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
system="",
sep=[
{"token": "<eoa>"},
"\n"
],
stop_words=[
"<eoa>"
],
efficient_eos=True
)
register_template(
name="llama2",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[]
)
register_template(
name="llama2_zh",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="You are a helpful assistant. 你是一个乐于助人的助手。",
sep=[]
)
register_template(
name="mistral",
prefix=[
"{{system}}"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="",
sep=[]
)
register_template(
name="openchat",
prefix=[
"{{system}}"
],
prompt=[
"GPT4 Correct User: {{query}}",
{"token": "<|end_of_turn|>"},
"GPT4 Correct Assistant:"
],
system="",
sep=[
{"token": "<|end_of_turn|>"}
],
stop_words=[
"<|end_of_turn|>"
],
efficient_eos=True
)
register_template(
name="qwen",
prefix=[
"<|im_start|>system\n{{system}}<|im_end|>"
],
prompt=[
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
],
system="You are a helpful assistant.",
sep=[
"\n"
],
stop_words=[
"<|im_end|>"
],
replace_eos=True
)
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
system="",
sep=[
{"token": "<|end|>"},
"\n"
],
stop_words=[
"<|end|>"
],
efficient_eos=True
)
register_template(
name="vanilla",
prefix=[],
prompt=[
"{{query}}"
],
system="",
sep=[],
use_history=False
)
register_template(
name="vicuna",
prefix=[
"{{system}}"
],
prompt=[
"USER: {{query}} ASSISTANT:"
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[]
)
register_template(
name="xuanyuan",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}} Assistant:"
],
system=(
"以下是用户和人工智能助手之间的对话。用户以Human开头人工智能助手以Assistant开头"
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
),
sep=[]
)
register_template(
name="xverse",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nAssistant: "
],
system="",
sep=[]
)
register_template(
name="yayi",
prefix=[
{"token": "<|System|>"},
":\n{{system}}"
],
prompt=[
{"token": "<|Human|>"},
":\n{{query}}\n\n",
{"token": "<|YaYi|>"},
":"
],
system=(
"You are a helpful, respectful and honest assistant named YaYi "
"developed by Beijing Wenge Technology Co.,Ltd. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[
"\n\n"
],
stop_words=[
"<|End|>"
]
)
register_template(
name="yi",
prefix=[
"{{system}}"
],
prompt=[
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
],
system="",
sep=[
"\n"
],
stop_words=[
"<|im_end|>"
],
replace_eos=True
)
register_template(
name="yuan",
prefix=[
"{{system}}"
],
prompt=[
"{{query}}",
{"token": "<sep>"}
],
system="",
sep=[
"\n"
],
stop_words=[
"<eod>"
],
replace_eos=True
)
register_template(
name="zephyr",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
{"token": "</s>"}
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "</s>"},
{"token": "<|assistant|>"}
],
system="You are a friendly chatbot who always responds in the style of a pirate",
sep=[]
)
register_template(
name="ziya",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<human>"},
":{{query}}\n",
{"token": "<bot>"},
":"
],
system="",
sep=[
"\n"
]
)