import tiktoken from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union from llmtuner.extras.logging import get_logger if TYPE_CHECKING: from transformers import PreTrainedTokenizer logger = get_logger(__name__) @dataclass class Template: prefix: List[Union[str, Dict[str, str]]] prompt: List[Union[str, Dict[str, str]]] system: str sep: List[Union[str, Dict[str, str]]] stop_words: List[str] use_history: bool efficient_eos: bool replace_eos: bool def encode_oneturn( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, system: Optional[str] = None ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ system, history = self._format(query, resp, history, system) encoded_pairs = self._encode(tokenizer, system, history) prompt_ids = [] for query_ids, resp_ids in encoded_pairs[:-1]: prompt_ids = prompt_ids + query_ids + resp_ids prompt_ids = prompt_ids + encoded_pairs[-1][0] answer_ids = encoded_pairs[-1][1] return prompt_ids, answer_ids def encode_multiturn( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, system: Optional[str] = None ) -> List[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ system, history = self._format(query, resp, history, system) encoded_pairs = self._encode(tokenizer, system, history) return encoded_pairs def _format( self, query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, system: Optional[str] = None ) -> Tuple[str, List[Tuple[str, str]]]: r""" Aligns inputs to the standard format. """ system = system or self.system # use system if provided history = history if (history and self.use_history) else [] history = history + [(query, resp)] return system, history def _get_special_ids( self, tokenizer: "PreTrainedTokenizer" ) -> Tuple[List[int], List[int]]: if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True): bos_ids = [tokenizer.bos_token_id] else: # baichuan, gpt2, qwen, yi models have no bos token bos_ids = [] if tokenizer.eos_token_id is None: raise ValueError("EOS token is required.") if self.efficient_eos: eos_ids = [] else: eos_ids = [tokenizer.eos_token_id] return bos_ids, eos_ids def _encode( self, tokenizer: "PreTrainedTokenizer", system: str, history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: bos + prefix + sep + query resp + eos Turn t: sep + bos + query resp + eos """ bos_ids, eos_ids = self._get_special_ids(tokenizer) sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep) encoded_pairs = [] for turn_idx, (query, resp) in enumerate(history): if turn_idx == 0: prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system) if len(prefix_ids) != 0: # has prefix prefix_ids = bos_ids + prefix_ids + sep_ids else: prefix_ids = bos_ids else: prefix_ids = sep_ids + bos_ids query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx+1)) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids)) return encoded_pairs def _convert_inputs_to_ids( self, tokenizer: "PreTrainedTokenizer", context: List[Union[str, Dict[str, str]]], system: Optional[str] = None, query: Optional[str] = None, idx: Optional[str] = None ) -> List[int]: r""" Converts context to token ids. """ if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen) kwargs = dict(allowed_special="all") else: kwargs = dict(add_special_tokens=False) token_ids = [] for elem in context: if isinstance(elem, str): elem = elem.replace("{{system}}", system, 1) if system is not None else elem elem = elem.replace("{{query}}", query, 1) if query is not None else elem elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem if len(elem) != 0: token_ids = token_ids + tokenizer.encode(elem, **kwargs) elif isinstance(elem, dict): token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))] else: raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem))) return token_ids @dataclass class Llama2Template(Template): def _encode( self, tokenizer: "PreTrainedTokenizer", system: str, history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: bos + prefix + query resp + eos Turn t: bos + query resp + eos """ bos_ids, eos_ids = self._get_special_ids(tokenizer) encoded_pairs = [] for turn_idx, (query, resp) in enumerate(history): if turn_idx == 0: # llama2 template has no sep_ids query = self.prefix[0].replace("{{system}}", system) + query query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids)) return encoded_pairs templates: Dict[str, Template] = {} def register_template( name: str, prefix: List[Union[str, Dict[str, str]]], prompt: List[Union[str, Dict[str, str]]], system: str, sep: List[Union[str, Dict[str, str]]], stop_words: Optional[List[str]] = [], use_history: Optional[bool] = True, efficient_eos: Optional[bool] = False, replace_eos: Optional[bool] = False ) -> None: template_class = Llama2Template if name.startswith("llama2") else Template templates[name] = template_class( prefix=prefix, prompt=prompt, system=system, sep=sep, stop_words=stop_words, use_history=use_history, efficient_eos=efficient_eos, replace_eos=replace_eos ) def get_template_and_fix_tokenizer( name: str, tokenizer: "PreTrainedTokenizer" ) -> Template: if tokenizer.eos_token_id is None: tokenizer.eos_token = "<|endoftext|>" logger.info("Add eos token: {}".format(tokenizer.eos_token)) if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info("Add pad token: {}".format(tokenizer.pad_token)) if name is None: # for pre-training return None template = templates.get(name, None) assert template is not None, "Template {} does not exist.".format(name) stop_words = template.stop_words if template.replace_eos: if not stop_words: raise ValueError("Stop words are required to replace the EOS token.") tokenizer.eos_token = stop_words[0] stop_words = stop_words[1:] logger.info("Replace eos token: {}".format(tokenizer.eos_token)) if stop_words: tokenizer.add_special_tokens( dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False ) logger.info("Add {} to stop words.".format(",".join(stop_words))) return template register_template( name="alpaca", prefix=[ "{{system}}" ], prompt=[ "### Instruction:\n{{query}}\n\n### Response:\n" ], system=( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ), sep=[ "\n\n" ] ) register_template( name="aquila", prefix=[ "{{system}}" ], prompt=[ "Human: {{query}}###Assistant:" ], system=( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ), sep=[ "###" ], stop_words=[ "" ], efficient_eos=True ) register_template( name="baichuan", prefix=[ "{{system}}" ], prompt=[ {"token": ""}, # user token "{{query}}", {"token": ""} # assistant token ], system="", sep=[], efficient_eos=True ) register_template( name="baichuan2", prefix=[ "{{system}}" ], prompt=[ {"token": ""}, # user token "{{query}}", {"token": ""} # assistant token ], system="", sep=[], efficient_eos=True ) register_template( name="belle", prefix=[ "{{system}}" ], prompt=[ "Human: {{query}}\n\nBelle: " ], system="", sep=[ "\n\n" ] ) register_template( name="bluelm", prefix=[ "{{system}}" ], prompt=[ {"token": "[|Human|]:"}, "{{query}}", {"token": "[|AI|]:"} ], system="", sep=[] ) register_template( name="chatglm2", prefix=[ {"token": "[gMASK]"}, {"token": "sop"}, "{{system}}" ], prompt=[ "[Round {{idx}}]\n\n问:{{query}}\n\n答:" ], system="", sep=[ "\n\n" ], efficient_eos=True ) register_template( name="chatglm3", prefix=[ {"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{system}}" ], prompt=[ {"token": "<|user|>"}, "\n", "{{query}}", {"token": "<|assistant|>"}, "\n" # add an extra newline to avoid error in ChatGLM's process_response method ], system=( "You are ChatGLM3, a large language model trained by Zhipu.AI. " "Follow the user's instructions carefully. Respond using markdown." ), sep=[], stop_words=[ "<|user|>", "<|observation|>" ], efficient_eos=True ) register_template( name="chatglm3_raw", # the raw template for tool tuning prefix=[ {"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{system}}" ], prompt=[ {"token": "<|user|>"}, "\n", "{{query}}", {"token": "<|assistant|>"} ], system=( "You are ChatGLM3, a large language model trained by Zhipu.AI. " "Follow the user's instructions carefully. Respond using markdown." ), sep=[], stop_words=[ "<|user|>", "<|observation|>" ], efficient_eos=True ) register_template( name="codegeex2", prefix=[ {"token": "[gMASK]"}, {"token": "sop"}, "{{system}}" ], prompt=[ "{{query}}" ], system="", sep=[] ) register_template( name="deepseek", prefix=[ "{{system}}" ], prompt=[ "User: {{query}}\n\nAssistant:" ], system="", sep=[] ) register_template( name="deepseekcoder", prefix=[ "{{system}}" ], prompt=[ "### Instruction:\n{{query}}\n### Response:\n" ], system=( "You are an AI programming assistant, utilizing the Deepseek Coder model, " "developed by Deepseek Company, and you only answer questions related to computer science. " "For politically sensitive questions, security and privacy issues, " "and other non-computer science questions, you will refuse to answer\n" ), sep=[ "\n", {"token": "<|EOT|>"}, "\n" ], stop_words=[ "<|EOT|>" ], efficient_eos=True ) register_template( name="default", prefix=[ "{{system}}" ], prompt=[ "Human: {{query}}\nAssistant:" ], system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), sep=[ "\n" ] ) register_template( name="falcon", prefix=[ "{{system}}" ], prompt=[ "User: {{query}}\nFalcon:" ], system="", sep=[ "\n" ], efficient_eos=True ) register_template( name="intern", prefix=[ "{{system}}" ], prompt=[ "<|User|>:{{query}}", {"token": ""}, "\n<|Bot|>:" ], system="", sep=[ {"token": ""}, "\n" ], stop_words=[ "" ], efficient_eos=True ) register_template( name="llama2", prefix=[ "<>\n{{system}}\n<>\n\n" ], prompt=[ "[INST] {{query}} [/INST]" ], system=( "You are a helpful, respectful and honest assistant. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information." ), sep=[] ) register_template( name="llama2_zh", prefix=[ "<>\n{{system}}\n<>\n\n" ], prompt=[ "[INST] {{query}} [/INST]" ], system="You are a helpful assistant. 你是一个乐于助人的助手。", sep=[] ) register_template( name="mistral", prefix=[ "{{system}}" ], prompt=[ "[INST] {{query}} [/INST]" ], system="", sep=[] ) register_template( name="openchat", prefix=[ "{{system}}" ], prompt=[ "GPT4 Correct User: {{query}}", {"token": "<|end_of_turn|>"}, "GPT4 Correct Assistant:" ], system="", sep=[ {"token": "<|end_of_turn|>"} ], stop_words=[ "<|end_of_turn|>" ], efficient_eos=True ) register_template( name="qwen", prefix=[ "<|im_start|>system\n{{system}}<|im_end|>" ], prompt=[ "<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n" ], system="You are a helpful assistant.", sep=[ "\n" ], stop_words=[ "<|im_end|>" ], replace_eos=True ) register_template( name="starchat", prefix=[ {"token": "<|system|>"}, "\n{{system}}", ], prompt=[ {"token": "<|user|>"}, "\n{{query}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"} ], system="", sep=[ {"token": "<|end|>"}, "\n" ], stop_words=[ "<|end|>" ], efficient_eos=True ) register_template( name="vanilla", prefix=[], prompt=[ "{{query}}" ], system="", sep=[], use_history=False ) register_template( name="vicuna", prefix=[ "{{system}}" ], prompt=[ "USER: {{query}} ASSISTANT:" ], system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), sep=[] ) register_template( name="xuanyuan", prefix=[ "{{system}}" ], prompt=[ "Human: {{query}} Assistant:" ], system=( "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," "会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" "不安全、有争议、政治敏感等相关的话题、问题和指示。\n" ), sep=[] ) register_template( name="xverse", prefix=[ "{{system}}" ], prompt=[ "Human: {{query}}\n\nAssistant: " ], system="", sep=[] ) register_template( name="yayi", prefix=[ {"token": "<|System|>"}, ":\n{{system}}" ], prompt=[ {"token": "<|Human|>"}, ":\n{{query}}\n\n", {"token": "<|YaYi|>"}, ":" ], system=( "You are a helpful, respectful and honest assistant named YaYi " "developed by Beijing Wenge Technology Co.,Ltd. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information." ), sep=[ "\n\n" ], stop_words=[ "<|End|>" ] ) register_template( name="yi", prefix=[ "{{system}}" ], prompt=[ "<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n" ], system="", sep=[ "\n" ], stop_words=[ "<|im_end|>" ], replace_eos=True ) register_template( name="yuan", prefix=[ "{{system}}" ], prompt=[ "{{query}}", {"token": ""} ], system="", sep=[ "\n" ], stop_words=[ "" ], replace_eos=True ) register_template( name="zephyr", prefix=[ {"token": "<|system|>"}, "\n{{system}}", {"token": ""} ], prompt=[ {"token": "<|user|>"}, "\n{{query}}", {"token": ""}, {"token": "<|assistant|>"} ], system="You are a friendly chatbot who always responds in the style of a pirate", sep=[] ) register_template( name="ziya", prefix=[ "{{system}}" ], prompt=[ {"token": ""}, ":{{query}}\n", {"token": ""}, ":" ], system="", sep=[ "\n" ] )