mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-11-05 18:32:14 +08:00
67 lines
2.6 KiB
Python
67 lines
2.6 KiB
Python
# Inspired by:
|
|
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
|
|
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
|
|
|
|
from transformers import Seq2SeqTrainingArguments
|
|
|
|
from llmtuner.dsets import get_dataset, preprocess_dataset
|
|
from llmtuner.extras.callbacks import LogCallback
|
|
from llmtuner.extras.ploting import plot_loss
|
|
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
|
|
from llmtuner.tuner.core import load_model_and_tokenizer
|
|
from llmtuner.tuner.rm.metric import compute_accuracy
|
|
from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding
|
|
from llmtuner.tuner.rm.trainer import PairwisePeftTrainer
|
|
|
|
|
|
def run_rm(
|
|
model_args: ModelArguments,
|
|
data_args: DataArguments,
|
|
training_args: Seq2SeqTrainingArguments,
|
|
finetuning_args: FinetuningArguments
|
|
):
|
|
dataset = get_dataset(model_args, data_args)
|
|
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm")
|
|
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
|
|
data_collator = PairwiseDataCollatorWithPadding(tokenizer)
|
|
|
|
training_args.remove_unused_columns = False # important for pairwise dataset
|
|
|
|
# Split the dataset
|
|
if training_args.do_train:
|
|
if data_args.dev_ratio > 1e-6:
|
|
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
|
|
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
|
else:
|
|
trainer_kwargs = {"train_dataset": dataset}
|
|
else: # do_eval or do_predict
|
|
trainer_kwargs = {"eval_dataset": dataset}
|
|
|
|
# Initialize our Trainer
|
|
trainer = PairwisePeftTrainer(
|
|
finetuning_args=finetuning_args,
|
|
model=model,
|
|
args=training_args,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
callbacks=[LogCallback()],
|
|
compute_metrics=compute_accuracy,
|
|
**trainer_kwargs
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
train_result = trainer.train()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
trainer.save_model()
|
|
if trainer.is_world_process_zero() and model_args.plot_loss:
|
|
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate(metric_key_prefix="eval")
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|