# Inspired by: # https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py # https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py from transformers import Seq2SeqTrainingArguments from llmtuner.dsets import get_dataset, preprocess_dataset from llmtuner.extras.callbacks import LogCallback from llmtuner.extras.ploting import plot_loss from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments from llmtuner.tuner.core import load_model_and_tokenizer from llmtuner.tuner.rm.metric import compute_accuracy from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding from llmtuner.tuner.rm.trainer import PairwisePeftTrainer def run_rm( model_args: ModelArguments, data_args: DataArguments, training_args: Seq2SeqTrainingArguments, finetuning_args: FinetuningArguments ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") data_collator = PairwiseDataCollatorWithPadding(tokenizer) training_args.remove_unused_columns = False # important for pairwise dataset # Split the dataset if training_args.do_train: if data_args.dev_ratio > 1e-6: dataset = dataset.train_test_split(test_size=data_args.dev_ratio) trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} else: trainer_kwargs = {"train_dataset": dataset} else: # do_eval or do_predict trainer_kwargs = {"eval_dataset": dataset} # Initialize our Trainer trainer = PairwisePeftTrainer( finetuning_args=finetuning_args, model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=[LogCallback()], compute_metrics=compute_accuracy, **trainer_kwargs ) # Training if training_args.do_train: train_result = trainer.train() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics)