mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
31 lines
1.4 KiB
Python
31 lines
1.4 KiB
Python
from typing import TYPE_CHECKING, Dict, Union
|
|
|
|
if TYPE_CHECKING:
|
|
from datasets import Dataset, IterableDataset
|
|
from transformers import TrainingArguments
|
|
from llmtuner.hparams import DataArguments
|
|
|
|
|
|
def split_dataset(
|
|
dataset: Union["Dataset", "IterableDataset"],
|
|
data_args: "DataArguments",
|
|
training_args: "TrainingArguments"
|
|
) -> Dict[str, "Dataset"]:
|
|
if training_args.do_train:
|
|
if data_args.val_size > 1e-6: # Split the dataset
|
|
if data_args.streaming:
|
|
val_set = dataset.take(int(data_args.val_size))
|
|
train_set = dataset.skip(int(data_args.val_size))
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
return {"train_dataset": train_set, "eval_dataset": val_set}
|
|
else:
|
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
|
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
|
else:
|
|
if data_args.streaming:
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset}
|
|
else: # do_eval or do_predict
|
|
return {"eval_dataset": dataset}
|