from typing import TYPE_CHECKING, Dict, Union if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import TrainingArguments from llmtuner.hparams import DataArguments def split_dataset( dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments" ) -> Dict[str, "Dataset"]: if training_args.do_train: if data_args.val_size > 1e-6: # Split the dataset if data_args.streaming: val_set = dataset.take(int(data_args.val_size)) train_set = dataset.skip(int(data_args.val_size)) dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": train_set, "eval_dataset": val_set} else: val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed) return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} else: if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": dataset} else: # do_eval or do_predict return {"eval_dataset": dataset}