mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 04:02:49 +08:00
33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import os
|
|
|
|
import torch
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from llamafactory.hparams import get_infer_args
|
|
from llamafactory.model import load_model, load_tokenizer
|
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
INFER_ARGS = {
|
|
"model_name_or_path": TINY_LLAMA,
|
|
"template": "llama3",
|
|
"infer_dtype": "float16",
|
|
}
|
|
|
|
|
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"):
|
|
state_dict_a = model_a.state_dict()
|
|
state_dict_b = model_b.state_dict()
|
|
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
|
|
for name in state_dict_a.keys():
|
|
assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True
|
|
|
|
|
|
def test_base():
|
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
|
ref_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device)
|
|
compare_model(model, ref_model)
|