import os import torch from transformers import AutoModelForCausalLM from llamafactory.hparams import get_infer_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "template": "llama3", "infer_dtype": "float16", } def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): state_dict_a = model_a.state_dict() state_dict_b = model_b.state_dict() assert set(state_dict_a.keys()) == set(state_dict_b.keys()) for name in state_dict_a.keys(): assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True def test_base(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) ref_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device) compare_model(model, ref_model)