mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 11:42:49 +08:00
148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
from typing import TYPE_CHECKING, Any, Dict, Tuple
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from trl import AutoModelForCausalLMWithValueHead
|
|
|
|
from ..extras.logging import get_logger
|
|
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
|
from .adapter import init_adapter
|
|
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
|
from .utils import load_valuehead_params, register_autoclass
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
|
|
|
from ..hparams import FinetuningArguments, ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
|
return {
|
|
"trust_remote_code": True,
|
|
"cache_dir": model_args.cache_dir,
|
|
"revision": model_args.model_revision,
|
|
"token": model_args.hf_hub_token,
|
|
}
|
|
|
|
|
|
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
|
r"""
|
|
Loads pretrained tokenizer. Must before load_model.
|
|
|
|
Note: including inplace operation of model_args.
|
|
"""
|
|
try_download_model_from_ms(model_args)
|
|
init_kwargs = _get_init_kwargs(model_args)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
split_special_tokens=model_args.split_special_tokens,
|
|
padding_side="right",
|
|
**init_kwargs,
|
|
)
|
|
patch_tokenizer(tokenizer)
|
|
return tokenizer
|
|
|
|
|
|
def load_model(
|
|
tokenizer: "PreTrainedTokenizer",
|
|
model_args: "ModelArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool = False,
|
|
add_valuehead: bool = False,
|
|
) -> "PreTrainedModel":
|
|
r"""
|
|
Loads pretrained model. Must after load_tokenizer.
|
|
"""
|
|
init_kwargs = _get_init_kwargs(model_args)
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
|
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
|
|
|
model = None
|
|
if is_trainable and model_args.use_unsloth:
|
|
from unsloth import FastLanguageModel # type: ignore
|
|
|
|
unsloth_kwargs = {
|
|
"model_name": model_args.model_name_or_path,
|
|
"max_seq_length": model_args.model_max_length,
|
|
"dtype": model_args.compute_dtype,
|
|
"load_in_4bit": model_args.quantization_bit == 4,
|
|
"token": model_args.hf_hub_token,
|
|
"device_map": {"": get_current_device()},
|
|
"rope_scaling": getattr(config, "rope_scaling", None),
|
|
}
|
|
try:
|
|
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
|
|
except NotImplementedError:
|
|
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
|
|
model_args.use_unsloth = False
|
|
|
|
if model_args.adapter_name_or_path:
|
|
model_args.adapter_name_or_path = None
|
|
logger.warning("Unsloth does not support loading adapters.")
|
|
|
|
if model is None:
|
|
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
|
|
|
|
patch_model(model, tokenizer, model_args, is_trainable)
|
|
register_autoclass(config, model, tokenizer)
|
|
|
|
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
|
|
|
if add_valuehead:
|
|
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
|
patch_valuehead_model(model)
|
|
|
|
if model_args.adapter_name_or_path is not None:
|
|
vhead_path = model_args.adapter_name_or_path[-1]
|
|
else:
|
|
vhead_path = model_args.model_name_or_path
|
|
|
|
vhead_params = load_valuehead_params(vhead_path, model_args)
|
|
if vhead_params is not None:
|
|
model.load_state_dict(vhead_params, strict=False)
|
|
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
|
|
|
|
if not is_trainable:
|
|
model.requires_grad_(False)
|
|
model.eval()
|
|
else:
|
|
model.train()
|
|
|
|
trainable_params, all_param = count_parameters(model)
|
|
if is_trainable:
|
|
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
|
trainable_params, all_param, 100 * trainable_params / all_param
|
|
)
|
|
else:
|
|
param_stats = "all params: {:d}".format(all_param)
|
|
logger.info(param_stats)
|
|
|
|
if model_args.print_param_status:
|
|
for name, param in model.named_parameters():
|
|
print(
|
|
"name: {}, dtype: {}, device: {}, trainable: {}".format(
|
|
name, param.dtype, param.device, param.requires_grad
|
|
)
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
def load_model_and_tokenizer(
|
|
model_args: "ModelArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool = False,
|
|
add_valuehead: bool = False,
|
|
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
|
r"""
|
|
Loads pretrained model and tokenizer.
|
|
"""
|
|
tokenizer = load_tokenizer(model_args)
|
|
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
|
|
return model, tokenizer
|