from typing import TYPE_CHECKING, Any, Dict, Tuple from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from trl import AutoModelForCausalLMWithValueHead from ..extras.logging import get_logger from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms from .adapter import init_adapter from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model from .utils import load_valuehead_params, register_autoclass if TYPE_CHECKING: from transformers import PreTrainedModel, PreTrainedTokenizer from ..hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]: return { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token, } def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer": r""" Loads pretrained tokenizer. Must before load_model. Note: including inplace operation of model_args. """ try_download_model_from_ms(model_args) init_kwargs = _get_init_kwargs(model_args) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", **init_kwargs, ) patch_tokenizer(tokenizer) return tokenizer def load_model( tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool = False, add_valuehead: bool = False, ) -> "PreTrainedModel": r""" Loads pretrained model. Must after load_tokenizer. """ init_kwargs = _get_init_kwargs(model_args) config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs) patch_config(config, tokenizer, model_args, init_kwargs, is_trainable) model = None if is_trainable and model_args.use_unsloth: from unsloth import FastLanguageModel # type: ignore unsloth_kwargs = { "model_name": model_args.model_name_or_path, "max_seq_length": model_args.model_max_length, "dtype": model_args.compute_dtype, "load_in_4bit": model_args.quantization_bit == 4, "token": model_args.hf_hub_token, "device_map": {"": get_current_device()}, "rope_scaling": getattr(config, "rope_scaling", None), } try: model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs) except NotImplementedError: logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None))) model_args.use_unsloth = False if model_args.adapter_name_or_path: model_args.adapter_name_or_path = None logger.warning("Unsloth does not support loading adapters.") if model is None: model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs) patch_model(model, tokenizer, model_args, is_trainable) register_autoclass(config, model, tokenizer) model = init_adapter(model, model_args, finetuning_args, is_trainable) if add_valuehead: model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) patch_valuehead_model(model) if model_args.adapter_name_or_path is not None: vhead_path = model_args.adapter_name_or_path[-1] else: vhead_path = model_args.model_name_or_path vhead_params = load_valuehead_params(vhead_path, model_args) if vhead_params is not None: model.load_state_dict(vhead_params, strict=False) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) if not is_trainable: model.requires_grad_(False) model.eval() else: model.train() trainable_params, all_param = count_parameters(model) if is_trainable: param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param ) else: param_stats = "all params: {:d}".format(all_param) logger.info(param_stats) if model_args.print_param_status: for name, param in model.named_parameters(): print( "name: {}, dtype: {}, device: {}, trainable: {}".format( name, param.dtype, param.device, param.requires_grad ) ) return model def load_model_and_tokenizer( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool = False, add_valuehead: bool = False, ) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]: r""" Loads pretrained model and tokenizer. """ tokenizer = load_tokenizer(model_args) model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead) return model, tokenizer