hiyouga 86419eb457 support chatml safe encoding
Former-commit-id: ea52bb135bf9d07738091006ec7ada8df14cf15e
2023-08-04 23:14:28 +08:00

451 lines
11 KiB
Python

from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from dataclasses import dataclass
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
@dataclass
class Template:
prefix: List[Union[str, Dict[str, str]]]
prompt: List[Union[str, Dict[str, str]]]
sep: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
def get_prompt(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
prefix, history = self._format(query=query, resp=resp, history=history, prefix=prefix)
encoded_pairs = self._encode(tokenizer=tokenizer, prefix=prefix, history=history)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids = prompt_ids + query_ids + resp_ids
prompt_ids = prompt_ids + encoded_pairs[-1][0]
return prompt_ids, encoded_pairs[-1][1]
def get_dialog(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
prefix, history = self._format(query=query, resp=resp, history=history, prefix=prefix)
encoded_pairs = self._encode(tokenizer=tokenizer, prefix=prefix, history=history)
return encoded_pairs
def _format(
self,
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> Tuple[List[Union[str, Dict[str, str]]], List[Tuple[str, str]]]:
r"""
Aligns inputs to a special format.
"""
prefix = [prefix] if prefix is not None else self.prefix # use prefix if provided
prefix = prefix + self.sep if prefix else [] # add separator for non-empty prefix
history = history if (history and self.use_history) else []
history = history + [(query, resp)]
return prefix, history
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
"""
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=prefix)
else:
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((prefix_ids + query_ids, resp_ids))
return encoded_pairs
def _convert_inputs_to_ids(
self,
tokenizer: "PreTrainedTokenizer",
context: List[Union[str, Dict[str, str]]],
query: Optional[str] = ""
) -> List[int]:
r"""
Converts context to token ids.
"""
token_ids = []
for elem in context:
if isinstance(elem, str):
elem = elem.format(query=query)
token_ids = token_ids + tokenizer.encode(elem, add_special_tokens=False)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
else:
raise NotImplementedError
return token_ids
@dataclass
class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
"""
encoded_pairs = []
assert isinstance(prefix[0], str), "LLaMA-2 template only accepts list containing a single str."
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
prefix_ids = []
query = prefix[0] + query
else:
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((prefix_ids + query_ids, resp_ids))
return encoded_pairs
templates: Dict[str, Template] = {}
def register_template(
name: str,
prefix: List[Union[str, Dict[str, str]]],
prompt: List[Union[str, Dict[str, str]]],
sep: List[Union[str, Dict[str, str]]],
stop_words: List[str],
use_history: bool
) -> None:
template_class = Llama2Template if name == "llama2" else Template
templates[name] = template_class(
prefix=prefix,
prompt=prompt,
sep=sep,
use_history=use_history,
stop_words=stop_words
)
def get_template(name: str) -> Template:
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
return template
r"""
Supports language model inference without histories.
"""
register_template(
name="vanilla",
prefix=[],
prompt=[
"{query}"
],
sep=[],
stop_words=[],
use_history=False
)
r"""
Default template.
"""
register_template(
name="default",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
],
prompt=[
"Human: {query}\nAssistant: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
"""
register_template(
name="llama2",
prefix=[
"<<SYS>>\nYou are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n"
],
prompt=[
"[INST] {query} [/INST] "
],
sep=[
{"token": "<s>"}
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://github.com/ymcui/Chinese-LLaMA-Alpaca
"""
register_template(
name="alpaca",
prefix=[
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
],
prompt=[
"### Instruction:\n{query}\n\n### Response:\n"
],
sep=[
"\n\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1
"""
register_template(
name="vicuna",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
],
prompt=[
"USER: {query} ASSISTANT: "
],
sep=[],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B
"""
register_template(
name="belle",
prefix=[],
prompt=[
"Human: {query}\n\nBelle: "
],
sep=[
"\n\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://github.com/CVI-SZU/Linly
"""
register_template(
name="linly",
prefix=[],
prompt=[
"User: {query}\nBot: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://github.com/Neutralzz/BiLLa
"""
register_template(
name="billa",
prefix=[],
prompt=[
"Human: {query}\nAssistant: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
register_template(
name="ziya",
prefix=[],
prompt=[
{"token": "<human>"},
":{query}\n",
{"token": "<bot>"},
":"
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/qhduan/aquilachat-7b
"""
register_template(
name="aquila",
prefix=[
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
],
prompt=[
"Human: {query}###Assistant: "
],
sep=[
"###"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/internlm/internlm-chat-7b
"""
register_template(
name="intern",
prefix=[],
prompt=[
{"token": "<|User|>"},
":{query}",
{"token": "<eoh>"},
"\n",
{"token": "<|Bot|>"},
":"
],
sep=[
{"token": "<eoa>"},
"\n"
],
stop_words=[
"<eoa>"
],
use_history=True
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
"""
register_template(
name="baichuan",
prefix=[],
prompt=[
{"token": "<reserved_102>"},
"{query}",
{"token": "<reserved_103>"}
],
sep=[],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha
https://huggingface.co/HuggingFaceH4/starchat-beta
"""
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n"
],
prompt=[
{"token": "<|user|>"},
"\n{query}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
sep=[
{"token": "<|end|>"},
"\n"
],
stop_words=[
"<|end|>"
],
use_history=True
)
r"""
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat
"""
register_template(
name="chatml",
prefix=[
{"token": "<|im_start|>"},
"system\nYou are a helpful assistant."
],
prompt=[
{"token": "<|im_start|>"},
"user\n{query}",
{"token": "<|im_end|>"},
"\n",
{"token": "<|im_start|>"},
"assistant\n"
],
sep=[
{"token": "<|im_end|>"},
"\n"
],
stop_words=[
"<|im_end|>"
],
use_history=True
)