from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union from dataclasses import dataclass if TYPE_CHECKING: from transformers import PreTrainedTokenizer @dataclass class Template: prefix: List[Union[str, Dict[str, str]]] prompt: List[Union[str, Dict[str, str]]] sep: List[Union[str, Dict[str, str]]] stop_words: List[str] use_history: bool def get_prompt( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ prefix, history = self._format(query=query, resp=resp, history=history, prefix=prefix) encoded_pairs = self._encode(tokenizer=tokenizer, prefix=prefix, history=history) prompt_ids = [] for query_ids, resp_ids in encoded_pairs[:-1]: prompt_ids = prompt_ids + query_ids + resp_ids prompt_ids = prompt_ids + encoded_pairs[-1][0] return prompt_ids, encoded_pairs[-1][1] def get_dialog( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> List[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ prefix, history = self._format(query=query, resp=resp, history=history, prefix=prefix) encoded_pairs = self._encode(tokenizer=tokenizer, prefix=prefix, history=history) return encoded_pairs def _format( self, query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> Tuple[List[Union[str, Dict[str, str]]], List[Tuple[str, str]]]: r""" Aligns inputs to a special format. """ prefix = [prefix] if prefix is not None else self.prefix # use prefix if provided prefix = prefix + self.sep if prefix else [] # add separator for non-empty prefix history = history if (history and self.use_history) else [] history = history + [(query, resp)] return prefix, history def _encode( self, tokenizer: "PreTrainedTokenizer", prefix: List[Union[str, Dict[str, str]]], history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. """ encoded_pairs = [] for turn_idx, (query, resp) in enumerate(history): if turn_idx == 0: prefix_ids = self._convert_inputs_to_ids(tokenizer, context=prefix) else: prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep) query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((prefix_ids + query_ids, resp_ids)) return encoded_pairs def _convert_inputs_to_ids( self, tokenizer: "PreTrainedTokenizer", context: List[Union[str, Dict[str, str]]], query: Optional[str] = "" ) -> List[int]: r""" Converts context to token ids. """ token_ids = [] for elem in context: if isinstance(elem, str): elem = elem.format(query=query) token_ids = token_ids + tokenizer.encode(elem, add_special_tokens=False) elif isinstance(elem, dict): token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))] else: raise NotImplementedError return token_ids @dataclass class Llama2Template(Template): def _encode( self, tokenizer: "PreTrainedTokenizer", prefix: List[Union[str, Dict[str, str]]], history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. """ encoded_pairs = [] assert isinstance(prefix[0], str), "LLaMA-2 template only accepts list containing a single str." for turn_idx, (query, resp) in enumerate(history): if turn_idx == 0: prefix_ids = [] query = prefix[0] + query else: prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep) query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((prefix_ids + query_ids, resp_ids)) return encoded_pairs templates: Dict[str, Template] = {} def register_template( name: str, prefix: List[Union[str, Dict[str, str]]], prompt: List[Union[str, Dict[str, str]]], sep: List[Union[str, Dict[str, str]]], stop_words: List[str], use_history: bool ) -> None: template_class = Llama2Template if name == "llama2" else Template templates[name] = template_class( prefix=prefix, prompt=prompt, sep=sep, use_history=use_history, stop_words=stop_words ) def get_template(name: str) -> Template: template = templates.get(name, None) assert template is not None, "Template {} does not exist.".format(name) return template r""" Supports language model inference without histories. """ register_template( name="vanilla", prefix=[], prompt=[ "{query}" ], sep=[], stop_words=[], use_history=False ) r""" Default template. """ register_template( name="default", prefix=[ "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ], prompt=[ "Human: {query}\nAssistant: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf https://huggingface.co/meta-llama/Llama-2-13b-chat-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf """ register_template( name="llama2", prefix=[ "<>\nYou are a helpful, respectful and honest assistant. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information.\n<>\n\n" ], prompt=[ "[INST] {query} [/INST] " ], sep=[ {"token": ""} ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff https://github.com/ymcui/Chinese-LLaMA-Alpaca """ register_template( name="alpaca", prefix=[ "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ], prompt=[ "### Instruction:\n{query}\n\n### Response:\n" ], sep=[ "\n\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1 https://huggingface.co/lmsys/vicuna-13b-delta-v1.1 """ register_template( name="vicuna", prefix=[ "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ], prompt=[ "USER: {query} ASSISTANT: " ], sep=[], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B """ register_template( name="belle", prefix=[], prompt=[ "Human: {query}\n\nBelle: " ], sep=[ "\n\n" ], stop_words=[], use_history=True ) r""" Supports: https://github.com/CVI-SZU/Linly """ register_template( name="linly", prefix=[], prompt=[ "User: {query}\nBot: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://github.com/Neutralzz/BiLLa """ register_template( name="billa", prefix=[], prompt=[ "Human: {query}\nAssistant: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1 """ register_template( name="ziya", prefix=[], prompt=[ {"token": ""}, ":{query}\n", {"token": ""}, ":" ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/qhduan/aquilachat-7b """ register_template( name="aquila", prefix=[ "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ], prompt=[ "Human: {query}###Assistant: " ], sep=[ "###" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/internlm/internlm-chat-7b """ register_template( name="intern", prefix=[], prompt=[ {"token": "<|User|>"}, ":{query}", {"token": ""}, "\n", {"token": "<|Bot|>"}, ":" ], sep=[ {"token": ""}, "\n" ], stop_words=[ "" ], use_history=True ) r""" Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat """ register_template( name="baichuan", prefix=[], prompt=[ {"token": ""}, "{query}", {"token": ""} ], sep=[], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha https://huggingface.co/HuggingFaceH4/starchat-beta """ register_template( name="starchat", prefix=[ {"token": "<|system|>"}, "\n" ], prompt=[ {"token": "<|user|>"}, "\n{query}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"} ], sep=[ {"token": "<|end|>"}, "\n" ], stop_words=[ "<|end|>" ], use_history=True ) r""" Supports: https://huggingface.co/Qwen/Qwen-7B-Chat """ register_template( name="chatml", prefix=[ {"token": "<|im_start|>"}, "system\nYou are a helpful assistant." ], prompt=[ {"token": "<|im_start|>"}, "user\n{query}", {"token": "<|im_end|>"}, "\n", {"token": "<|im_start|>"}, "assistant\n" ], sep=[ {"token": "<|im_end|>"}, "\n" ], stop_words=[ "<|im_end|>" ], use_history=True )