LLaMA-Factory/examples/README_zh.md
Butui Hu 83688b0b4d
[launcher] Add elastic and fault-tolerant training support (#8286)
Signed-off-by: Butui Hu <hot123tea123@gmail.com>
2025-06-05 16:40:03 +08:00

6.8 KiB
Raw Blame History

我们提供了多样化的大模型微调示例脚本。

请确保在 LLaMA-Factory 目录下执行下述命令。

目录

使用 CUDA_VISIBLE_DEVICESGPUASCEND_RT_VISIBLE_DEVICESNPU选择计算设备。

LLaMA-Factory 默认使用所有可见的计算设备。

基础用法:

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

高级用法:

CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
    learning_rate=1e-5 \
    logging_steps=1
bash examples/train_lora/llama3_lora_sft.sh

示例

LoRA 微调

(增量)预训练

llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml

指令监督微调

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

多模态指令监督微调

llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml

DPO/ORPO/SimPO 训练

llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml

多模态 DPO/ORPO/SimPO 训练

llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml

奖励模型训练

llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml

PPO 训练

llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml

KTO 训练

llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml

预处理数据集

对于大数据集有帮助,在配置中使用 tokenized_path 以加载预处理后的数据集。

llamafactory-cli train examples/train_lora/llama3_preprocess.yaml

在 MMLU/CMMLU/C-Eval 上评估

llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml

多机指令监督微调

FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

支持弹性和容错的多机指令监督微调

要启动一个支持弹性节点和容错的多机指令微调,在每个节点上执行以下命令。弹性节点数量范围为 MIN_NNODES:MAX_NNODES,每个节点最多允许因为错误重启 MAX_RESTARTS 次。RDZV_ID 应设置为一个唯一的作业 ID由参与该作业的所有节点共享。更多新可以参考官方文档 torchrun

FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml

使用 DeepSpeed ZeRO-3 平均分配显存

FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml

使用 Ray 在 4 张 GPU 上微调

USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml

QLoRA 微调

基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)

llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml

在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调

llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml

基于 4/8 比特 GPTQ 量化进行指令监督微调

llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml

基于 4 比特 AWQ 量化进行指令监督微调

llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml

基于 2 比特 AQLM 量化进行指令监督微调

llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml

全参数微调

在单机上进行指令监督微调

FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml

在多机上进行指令监督微调

FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml

多模态指令监督微调

FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml

合并 LoRA 适配器与模型量化

合并 LoRA 适配器

注:请勿使用量化后的模型或 quantization_bit 参数来合并 LoRA 适配器。

llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml

使用 AutoGPTQ 量化模型

llamafactory-cli export examples/merge_lora/llama3_gptq.yaml

保存 Ollama 配置文件

llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml

推理 LoRA 模型

使用 vLLM 多卡推理评估

python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl

使用命令行对话框

llamafactory-cli chat examples/inference/llama3_lora_sft.yaml

使用浏览器对话框

llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml

启动 OpenAI 风格 API

llamafactory-cli api examples/inference/llama3_lora_sft.yaml

杂项

使用 GaLore 进行全参数训练

llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml

使用 APOLLO 进行全参数训练

llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml

使用 BAdam 进行全参数训练

llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml

使用 Adam-mini 进行全参数训练

llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml

使用 Muon 进行全参数训练

llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml

LoRA+ 微调

llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml

PiSSA 微调

llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml

深度混合微调

llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml

LLaMA-Pro 微调

bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml

FSDP+QLoRA 微调

bash examples/extras/fsdp_qlora/train.sh