mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
111 lines
4.3 KiB
Python
111 lines
4.3 KiB
Python
from typing import TYPE_CHECKING, Optional, Tuple
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
|
from transformers.utils.versions import require_version
|
|
from trl import AutoModelForCausalLMWithValueHead
|
|
|
|
import llmtuner.model.patcher as patcher
|
|
from llmtuner.extras.logging import get_logger
|
|
from llmtuner.extras.misc import count_parameters, try_download_model_from_ms
|
|
from llmtuner.model.adapter import init_adapter
|
|
from llmtuner.model.utils import (
|
|
load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
|
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
require_version("transformers>=4.36.1", "To fix: pip install transformers>=4.36.1")
|
|
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
|
|
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
|
|
require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0")
|
|
require_version("trl==0.7.4", "To fix: pip install trl==0.7.4")
|
|
|
|
|
|
def load_model_and_tokenizer(
|
|
model_args: "ModelArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: Optional[bool] = False,
|
|
add_valuehead: Optional[bool] = False
|
|
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
|
r"""
|
|
Loads pretrained model and tokenizer.
|
|
|
|
Support both training and inference.
|
|
"""
|
|
|
|
try_download_model_from_ms(model_args)
|
|
|
|
config_kwargs = {
|
|
"trust_remote_code": True,
|
|
"cache_dir": model_args.cache_dir,
|
|
"revision": model_args.model_revision,
|
|
"token": model_args.hf_hub_token
|
|
}
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
split_special_tokens=model_args.split_special_tokens,
|
|
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
|
|
**config_kwargs
|
|
)
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
|
|
patcher.patch_tokenizer(tokenizer)
|
|
patcher.patch_config(config, model_args)
|
|
patcher.configure_rope(config, model_args, is_trainable)
|
|
patcher.configure_flashattn(config_kwargs, model_args)
|
|
patcher.configure_longlora(config, model_args, is_trainable)
|
|
patcher.configure_quantization(config, config_kwargs, tokenizer, model_args, finetuning_args)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
torch_dtype=model_args.compute_dtype,
|
|
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
|
|
**config_kwargs
|
|
)
|
|
patcher.patch_model(model)
|
|
register_autoclass(config, model, tokenizer)
|
|
resize_embedding_layer(model, tokenizer)
|
|
|
|
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
|
|
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
|
|
|
if add_valuehead:
|
|
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
|
patcher.patch_valuehead_model(model)
|
|
|
|
if model_args.adapter_name_or_path is not None:
|
|
vhead_path = model_args.adapter_name_or_path[-1]
|
|
else:
|
|
vhead_path = model_args.model_name_or_path
|
|
|
|
vhead_params = load_valuehead_params(vhead_path, model_args)
|
|
if vhead_params is not None:
|
|
model.load_state_dict(vhead_params, strict=False)
|
|
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
|
|
|
|
if not is_trainable:
|
|
model.requires_grad_(False) # fix all model params
|
|
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
|
model.eval()
|
|
else:
|
|
model.train()
|
|
|
|
trainable_params, all_param = count_parameters(model)
|
|
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
|
trainable_params, all_param, 100 * trainable_params / all_param
|
|
))
|
|
|
|
if not is_trainable:
|
|
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
|
|
|
|
return model, tokenizer
|