from typing import TYPE_CHECKING, Optional, Tuple from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.integrations import is_deepspeed_zero3_enabled from transformers.utils.versions import require_version from trl import AutoModelForCausalLMWithValueHead import llmtuner.model.patcher as patcher from llmtuner.extras.logging import get_logger from llmtuner.extras.misc import count_parameters, try_download_model_from_ms from llmtuner.model.adapter import init_adapter from llmtuner.model.utils import ( load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass ) if TYPE_CHECKING: from transformers import PreTrainedModel, PreTrainedTokenizer from llmtuner.hparams import ModelArguments, FinetuningArguments logger = get_logger(__name__) require_version("transformers>=4.36.1", "To fix: pip install transformers>=4.36.1") require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0") require_version("trl==0.7.4", "To fix: pip install trl==0.7.4") def load_model_and_tokenizer( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: Optional[bool] = False, add_valuehead: Optional[bool] = False ) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]: r""" Loads pretrained model and tokenizer. Support both training and inference. """ try_download_model_from_ms(model_args) config_kwargs = { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token } tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow **config_kwargs ) config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) patcher.patch_tokenizer(tokenizer) patcher.patch_config(config, model_args) patcher.configure_rope(config, model_args, is_trainable) patcher.configure_flashattn(config_kwargs, model_args) patcher.configure_longlora(config, model_args, is_trainable) patcher.configure_quantization(config, config_kwargs, tokenizer, model_args, finetuning_args) model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, torch_dtype=model_args.compute_dtype, low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), **config_kwargs ) patcher.patch_model(model) register_autoclass(config, model, tokenizer) resize_embedding_layer(model, tokenizer) model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model model = init_adapter(model, model_args, finetuning_args, is_trainable) if add_valuehead: model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) patcher.patch_valuehead_model(model) if model_args.adapter_name_or_path is not None: vhead_path = model_args.adapter_name_or_path[-1] else: vhead_path = model_args.model_name_or_path vhead_params = load_valuehead_params(vhead_path, model_args) if vhead_params is not None: model.load_state_dict(vhead_params, strict=False) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) if not is_trainable: model.requires_grad_(False) # fix all model params model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model model.eval() else: model.train() trainable_params, all_param = count_parameters(model) logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param )) if not is_trainable: logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") return model, tokenizer