mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-15 08:08:09 +08:00
64 lines
2.5 KiB
Python
64 lines
2.5 KiB
Python
from typing import TYPE_CHECKING, Tuple
|
|
|
|
import torch
|
|
import transformers
|
|
from torch import nn
|
|
|
|
from ...extras.logging import get_logger
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def configure_hidden_size(config: "PretrainedConfig") -> None:
|
|
if getattr(config, "model_type", None) == "llava":
|
|
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
|
|
|
|
|
def autocast_projector_dtype(
|
|
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector"
|
|
) -> None:
|
|
def _mm_projector_forward_post_hook(
|
|
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
|
|
) -> "torch.Tensor":
|
|
return output.to(model_args.compute_dtype)
|
|
|
|
if hasattr(model, mm_projector_name) and (
|
|
getattr(model.config, "quantization_method", None)
|
|
or "Yi" in getattr(model.config.text_config, "_name_or_path", None)
|
|
):
|
|
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
|
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
|
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
|
|
|
|
|
class LlavaMultiModalProjectorYiVL(nn.Module):
|
|
def __init__(self, config: "LlavaConfig"):
|
|
super().__init__()
|
|
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
|
self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
|
self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
|
self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
|
self.act = nn.GELU()
|
|
|
|
def forward(self, image_features):
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_3(hidden_states)
|
|
hidden_states = self.linear_4(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
def configure_visual(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
|
logger = get_logger(__name__)
|
|
if model_args.visual_inputs and "Yi" in getattr(config.text_config, "_name_or_path", None):
|
|
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL
|
|
logger.info("Patched Multimodal Projector for Yi-VL.")
|