from typing import TYPE_CHECKING, Tuple import torch import transformers from torch import nn from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments logger = get_logger(__name__) def configure_hidden_size(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "llava": setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) def autocast_projector_dtype( model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector" ) -> None: def _mm_projector_forward_post_hook( module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" ) -> "torch.Tensor": return output.to(model_args.compute_dtype) if hasattr(model, mm_projector_name) and ( getattr(model.config, "quantization_method", None) or "Yi" in getattr(model.config.text_config, "_name_or_path", None) ): logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) mm_projector.register_forward_hook(_mm_projector_forward_post_hook) class LlavaMultiModalProjectorYiVL(nn.Module): def __init__(self, config: "LlavaConfig"): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = nn.GELU() def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) return hidden_states def configure_visual(config: "PretrainedConfig", model_args: "ModelArguments") -> None: logger = get_logger(__name__) if model_args.visual_inputs and "Yi" in getattr(config.text_config, "_name_or_path", None): transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL logger.info("Patched Multimodal Projector for Yi-VL.")