hiyouga 5b61063048 fix api server
Former-commit-id: 08464183b9b034abdbf179d7043705a0754837e5
2024-01-07 17:14:42 +08:00

196 lines
7.0 KiB
Python

import os
import json
import asyncio
from typing import List, Tuple
from pydantic import BaseModel
from contextlib import asynccontextmanager
from llmtuner.api.protocol import (
Role,
Finish,
ModelCard,
ModelList,
ChatMessage,
DeltaMessage,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionStreamResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage,
ScoreEvaluationRequest,
ScoreEvaluationResponse
)
from llmtuner.chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.extras.packages import (
is_fastapi_availble, is_starlette_available, is_uvicorn_available
)
if is_fastapi_availble():
from fastapi import FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
if is_starlette_available():
from sse_starlette import EventSourceResponse
if is_uvicorn_available():
import uvicorn
@asynccontextmanager
async def lifespan(app: "FastAPI"): # collects GPU memory
yield
torch_gc()
def to_json(data: BaseModel) -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False)
def create_app(chat_model: "ChatModel") -> "FastAPI":
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
async def create_chat_completion(request: ChatCompletionRequest):
if not chat_model.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0 or request.messages[-1].role != Role.USER:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) and prev_messages[0].role == Role.SYSTEM:
system = prev_messages.pop(0).content
else:
system = None
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT:
history.append([prev_messages[i].content, prev_messages[i+1].content])
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
async with semaphore:
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, chat_completion, query, history, system, request)
def chat_completion(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
if request.stream:
generate = stream_chat_completion(query, history, system, request)
return EventSourceResponse(generate, media_type="text/event-stream")
responses = chat_model.chat(
query, history, system,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
num_return_sequences=request.n
)
prompt_length, response_length = 0, 0
choices = []
for i, response in enumerate(responses):
choices.append(ChatCompletionResponseChoice(
index=i,
message=ChatMessage(role=Role.ASSISTANT, content=response.response_text),
finish_reason=Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
))
prompt_length = response.prompt_length
response_length += response.response_length
usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length,
completion_tokens=response_length,
total_tokens=prompt_length+response_length
)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
def stream_chat_completion(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role=Role.ASSISTANT, content=""),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk)
for new_text in chat_model.stream_chat(
query, history, system,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens
):
if len(new_text) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason=Finish.STOP
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk)
yield "[DONE]"
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
async def create_score_evaluation(request: ScoreEvaluationRequest):
if chat_model.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
async with semaphore:
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, get_score, request)
def get_score(request: ScoreEvaluationRequest):
scores = chat_model.get_scores(request.messages, max_length=request.max_length)
return ScoreEvaluationResponse(model=request.model, scores=scores)
return app
if __name__ == "__main__":
chat_model = ChatModel()
app = create_app(chat_model)
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)