import os import json import asyncio from typing import List, Tuple from pydantic import BaseModel from contextlib import asynccontextmanager from llmtuner.api.protocol import ( Role, Finish, ModelCard, ModelList, ChatMessage, DeltaMessage, ChatCompletionRequest, ChatCompletionResponse, ChatCompletionStreamResponse, ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionResponseUsage, ScoreEvaluationRequest, ScoreEvaluationResponse ) from llmtuner.chat import ChatModel from llmtuner.extras.misc import torch_gc from llmtuner.extras.packages import ( is_fastapi_availble, is_starlette_available, is_uvicorn_available ) if is_fastapi_availble(): from fastapi import FastAPI, HTTPException, status from fastapi.middleware.cors import CORSMiddleware if is_starlette_available(): from sse_starlette import EventSourceResponse if is_uvicorn_available(): import uvicorn @asynccontextmanager async def lifespan(app: "FastAPI"): # collects GPU memory yield torch_gc() def to_json(data: BaseModel) -> str: try: # pydantic v2 return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False) except: # pydantic v1 return data.json(exclude_unset=True, ensure_ascii=False) def create_app(chat_model: "ChatModel") -> "FastAPI": app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1))) @app.get("/v1/models", response_model=ModelList) async def list_models(): model_card = ModelCard(id="gpt-3.5-turbo") return ModelList(data=[model_card]) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK) async def create_chat_completion(request: ChatCompletionRequest): if not chat_model.can_generate: raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") if len(request.messages) == 0 or request.messages[-1].role != Role.USER: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") query = request.messages[-1].content prev_messages = request.messages[:-1] if len(prev_messages) and prev_messages[0].role == Role.SYSTEM: system = prev_messages.pop(0).content else: system = None history = [] if len(prev_messages) % 2 == 0: for i in range(0, len(prev_messages), 2): if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT: history.append([prev_messages[i].content, prev_messages[i+1].content]) else: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") else: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") async with semaphore: loop = asyncio.get_running_loop() return await loop.run_in_executor(None, chat_completion, query, history, system, request) def chat_completion(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest): if request.stream: generate = stream_chat_completion(query, history, system, request) return EventSourceResponse(generate, media_type="text/event-stream") responses = chat_model.chat( query, history, system, do_sample=request.do_sample, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens, num_return_sequences=request.n ) prompt_length, response_length = 0, 0 choices = [] for i, response in enumerate(responses): choices.append(ChatCompletionResponseChoice( index=i, message=ChatMessage(role=Role.ASSISTANT, content=response.response_text), finish_reason=Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH )) prompt_length = response.prompt_length response_length += response.response_length usage = ChatCompletionResponseUsage( prompt_tokens=prompt_length, completion_tokens=response_length, total_tokens=prompt_length+response_length ) return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) def stream_chat_completion(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest): choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(role=Role.ASSISTANT, content=""), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield to_json(chunk) for new_text in chat_model.stream_chat( query, history, system, do_sample=request.do_sample, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens ): if len(new_text) == 0: continue choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(content=new_text), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield to_json(chunk) choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(), finish_reason=Finish.STOP ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield to_json(chunk) yield "[DONE]" @app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK) async def create_score_evaluation(request: ScoreEvaluationRequest): if chat_model.can_generate: raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") if len(request.messages) == 0: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") async with semaphore: loop = asyncio.get_running_loop() return await loop.run_in_executor(None, get_score, request) def get_score(request: ScoreEvaluationRequest): scores = chat_model.get_scores(request.messages, max_length=request.max_length) return ScoreEvaluationResponse(model=request.model, scores=scores) return app if __name__ == "__main__": chat_model = ChatModel() app = create_app(chat_model) uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)