LLaMA-Factory/scripts/megatron_merge.py
Kingsley 13170577b2
[feat] support megatron-LM training by mcore_adapter (#9237)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-26 16:21:30 +08:00

126 lines
4.1 KiB
Python

# Copyright 2025 the ROLL team and the LlamaFactory team.
#
# This code is modified from the ROLL library.
# https://github.com/alibaba/ROLL/blob/main/mcore_adapter/tools/convert.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional
import fire
import torch
from mcore_adapter.models.converter.post_converter import convert_checkpoint_to_hf, convert_checkpoint_to_mca
from mcore_adapter.training_args import DistributingParallelArguments
from mcore_adapter.utils import get_logger
from transformers import AutoConfig
logger = get_logger(__name__)
def convert_mca_to_hf(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: Optional[int] = None,
):
"""Convert megatron checkpoint to HuggingFace format.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
torch_dtype = None
if bf16:
torch_dtype = torch.bfloat16
elif fp16:
torch_dtype = torch.float16
convert_checkpoint_to_hf(checkpoint_path, output_path, torch_dtype=torch_dtype)
if convert_model_max_length is not None:
config = AutoConfig.from_pretrained(output_path, trust_remote_code=True)
config.model_max_length = convert_model_max_length
config.save_pretrained(output_path)
def convert(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: Optional[int] = None,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
expert_model_parallel_size: int = 1,
virtual_pipeline_model_parallel_size: Optional[int] = None,
):
"""Convert checkpoint between MCA and HuggingFace formats.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
tensor_model_parallel_size: Tensor model parallel size
pipeline_model_parallel_size: Pipeline model parallel size
expert_model_parallel_size: Expert model parallel size
virtual_pipeline_model_parallel_size: Virtual pipeline model parallel size
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
mca_config_path = os.path.join(checkpoint_path, "mca_config.json")
from_mca = os.path.exists(mca_config_path)
if not from_mca:
dist_args = DistributingParallelArguments(
tensor_model_parallel_size=tensor_model_parallel_size,
pipeline_model_parallel_size=pipeline_model_parallel_size,
expert_model_parallel_size=expert_model_parallel_size,
virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size,
)
convert_checkpoint_to_mca(
checkpoint_path,
output_path,
dist_args,
bf16=bf16,
fp16=fp16,
)
else:
convert_mca_to_hf(
checkpoint_path=checkpoint_path,
output_path=output_path,
bf16=bf16,
fp16=fp16,
convert_model_max_length=convert_model_max_length,
)
def main():
fire.Fire(convert)
if __name__ == "__main__":
main()