👋 Join our WeChat.
 English | [中文](README_zh.md) 
LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
Preview LLaMA Board at 🤗 Spaces or ModelScope.
Launch LLaMA Board via CUDA_VISIBLE_DEVICES=0 python src/train_web.py. (multiple GPUs are not supported yet in this mode)
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
Table of Contents
- Benchmark
 - Changelog
 - Supported Models
 - Supported Training Approaches
 - Provided Datasets
 - Requirement
 - Getting Started
 - Projects using LLaMA Factory
 - License
 - Citation
 - Acknowledgement
 
Benchmark
Compared to ChatGLM's P-Tuning, LLaMA-Factory's LoRA tuning offers up to 3.7 times faster training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA-Factory's QLoRA further improves the efficiency regarding the GPU memory.
Definitions
- Training Speed: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
 - Rouge Score: Rouge-2 score on the development set of the advertising text generation task. (bs=4, cutoff_len=1024)
 - GPU Memory: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
 - We adopt 
pre_seq_len=128for ChatGLM's P-Tuning andlora_rank=32for LLaMA-Factory's LoRA tuning. 
Changelog
[24/02/15] We supported block expansion proposed by LLaMA Pro. See tests/llama_pro.py for usage.
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this blog post for details.
[24/01/18] We supported agent tuning for most models, equipping model with tool using abilities by fine-tuning with --dataset glaive_toolcall.
Full Changelog
[23/12/23] We supported unsloth's implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try --use_unsloth argument to activate unsloth patch. It achieves 1.7x speed in our benchmark, check this page for details.
[23/12/12] We supported fine-tuning the latest MoE model Mixtral 8x7B in our framework. See hardware requirement here.
[23/12/01] We supported downloading pre-trained models and datasets from the ModelScope Hub for Chinese mainland users. See this tutorial for usage.
[23/10/21] We supported NEFTune trick for fine-tuning. Try --neftune_noise_alpha argument to activate NEFTune, e.g., --neftune_noise_alpha 5.
[23/09/27] We supported $S^2$-Attn proposed by LongLoRA for the LLaMA models. Try --shift_attn argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See this example to evaluate your models.
[23/09/10] We supported FlashAttention-2. Try --flash_attn argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported RoPE scaling to extend the context length of the LLaMA models. Try --rope_scaling linear argument in training and --rope_scaling dynamic argument at inference to extrapolate the position embeddings.
[23/08/11] We supported DPO training for instruction-tuned models. See this example to train your models.
[23/07/31] We supported dataset streaming. Try --streaming and --max_steps 10000 arguments to load your dataset in streaming mode.
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos (LLaMA-2 / Baichuan) for details.
[23/07/18] We developed an all-in-one Web UI for training, evaluation and inference. Try train_web.py to fine-tune models in your Web browser. Thank @KanadeSiina and @codemayq for their efforts in the development.
[23/07/09] We released FastEdit ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow FastEdit if you are interested.
[23/06/29] We provided a reproducible example of training a chat model using instruction-following datasets, see Baichuan-7B-sft for details.
[23/06/22] We aligned the demo API with the OpenAI's format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.
[23/06/03] We supported quantized training and inference (aka QLoRA). Try --quantization_bit 4/8 argument to work with quantized models.
Supported Models
| Model | Model size | Default module | Template | 
|---|---|---|---|
| Baichuan2 | 7B/13B | W_pack | baichuan2 | 
| BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | 
| BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | 
| ChatGLM3 | 6B | query_key_value | chatglm3 | 
| DeepSeek (MoE) | 7B/16B/67B | q_proj,v_proj | deepseek | 
| Falcon | 7B/40B/180B | query_key_value | falcon | 
| Gemma | 2B/7B | q_proj,v_proj | gemma | 
| InternLM2 | 7B/20B | wqkv | intern2 | 
| LLaMA | 7B/13B/33B/65B | q_proj,v_proj | - | 
| LLaMA-2 | 7B/13B/70B | q_proj,v_proj | llama2 | 
| Mistral | 7B | q_proj,v_proj | mistral | 
| Mixtral | 8x7B | q_proj,v_proj | mistral | 
| Phi-1.5/2 | 1.3B/2.7B | q_proj,v_proj | - | 
| Qwen | 1.8B/7B/14B/72B | c_attn | qwen | 
| Qwen1.5 | 0.5B/1.8B/4B/7B/14B/72B | q_proj,v_proj | qwen | 
| XVERSE | 7B/13B/65B | q_proj,v_proj | xverse | 
| Yi | 6B/34B | q_proj,v_proj | yi | 
| Yuan | 2B/51B/102B | q_proj,v_proj | yuan | 
Note
Default module is used for the
--lora_targetargument, you can use--lora_target allto specify all the available modules.For the "base" models, the
--templateargument can be chosen fromdefault,alpaca,vicunaetc. But make sure to use the corresponding template for the "chat" models.
Please refer to constants.py for a full list of models we supported.
Supported Training Approaches
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA | 
|---|---|---|---|---|
| Pre-Training | ✅ | ✅ | ✅ | ✅ | 
| Supervised Fine-Tuning | ✅ | ✅ | ✅ | ✅ | 
| Reward Modeling | ✅ | ✅ | ✅ | ✅ | 
| PPO Training | ✅ | ✅ | ✅ | ✅ | 
| DPO Training | ✅ | ✅ | ✅ | ✅ | 
Note
Use
--quantization_bit 4argument to enable QLoRA.
Provided Datasets
Pre-training datasets
Supervised fine-tuning datasets
- Stanford Alpaca (en)
 - Stanford Alpaca (zh)
 - Alpaca GPT4 (en&zh)
 - Self Cognition (zh)
 - Open Assistant (multilingual)
 - ShareGPT (zh)
 - Guanaco Dataset (multilingual)
 - BELLE 2M (zh)
 - BELLE 1M (zh)
 - BELLE 0.5M (zh)
 - BELLE Dialogue 0.4M (zh)
 - BELLE School Math 0.25M (zh)
 - BELLE Multiturn Chat 0.8M (zh)
 - UltraChat (en)
 - LIMA (en)
 - OpenPlatypus (en)
 - CodeAlpaca 20k (en)
 - Alpaca CoT (multilingual)
 - OpenOrca (en)
 - SlimOrca (en)
 - MathInstruct (en)
 - Firefly 1.1M (zh)
 - Wiki QA (en)
 - Web QA (zh)
 - WebNovel (zh)
 - Nectar (en)
 - deepctrl (en&zh)
 - Ad Gen (zh)
 - ShareGPT Hyperfiltered (en)
 - ShareGPT4 (en&zh)
 - UltraChat 200k (en)
 - AgentInstruct (en)
 - LMSYS Chat 1M (en)
 - Evol Instruct V2 (en)
 - Glaive Function Calling V2 (en)
 - Open Assistant (de)
 - Dolly 15k (de)
 - Alpaca GPT4 (de)
 - OpenSchnabeltier (de)
 - Evol Instruct (de)
 - Dolphin (de)
 - Booksum (de)
 - Airoboros (de)
 - Ultrachat (de)
 
Preference datasets
Please refer to data/README.md for details.
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
pip install --upgrade huggingface_hub
huggingface-cli login
Requirement
- Python 3.8+ and PyTorch 1.13.1+
 - 🤗Transformers, Datasets, Accelerate, PEFT and TRL
 - sentencepiece, protobuf and tiktoken
 - jieba, rouge-chinese and nltk (used at evaluation and predict)
 - gradio and matplotlib (used in web UI)
 - uvicorn, fastapi and sse-starlette (used in API)
 
Hardware Requirement
| Method | Bits | 7B | 13B | 30B | 65B | 8x7B | 
|---|---|---|---|---|---|---|
| Full | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB | 
| Freeze | 16 | 20GB | 40GB | 120GB | 240GB | 200GB | 
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB | 
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB | 
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB | 
Getting Started
Data Preparation (optional)
Please refer to data/README.md for checking the details about the format of dataset files. You can either use a single .json file or a dataset loading script with multiple files to create a custom dataset.
Note
Please update
data/dataset_info.jsonto use your custom dataset. About the format of this file, please refer todata/README.md.
Dependence Installation (optional)
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of bitsandbytes library, which supports CUDA 11.1 to 12.2.
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.0-py3-none-win_amd64.whl
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled flash-attn library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from flash-attention based on your requirements.
Use ModelScope Hub (optional)
If you have trouble with downloading models and datasets from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner.
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
Then you can train the corresponding model by specifying a model ID of the ModelScope Hub. (find a full list of model IDs at ModelScope Hub)
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --model_name_or_path modelscope/Llama-2-7b-ms \
    ... # arguments (same as above)
LLaMA Board also supports using the models and datasets on the ModelScope Hub.
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
Train on a single GPU
Important
If you want to train models on multiple GPUs, please refer to Distributed Training.
Pre-Training
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage pt \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --dataset wiki_demo \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_pt_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16
Supervised Fine-Tuning
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16
Reward Modeling
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage rm \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_sft_checkpoint \
    --create_new_adapter \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_rm_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-6 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
PPO Training
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage ppo \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_sft_checkpoint \
    --create_new_adapter \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --reward_model path_to_rm_checkpoint \
    --output_dir path_to_ppo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --top_k 0 \
    --top_p 0.9 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
Tip
Use
--adapter_name_or_path path_to_sft_checkpoint,path_to_ppo_checkpointto infer the fine-tuned model.
Warning
Use
--per_device_train_batch_size=1for LLaMA-2 models in fp16 PPO training.
DPO Training
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage dpo \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_sft_checkpoint \
    --create_new_adapter \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_dpo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
Tip
Use
--adapter_name_or_path path_to_sft_checkpoint,path_to_dpo_checkpointto infer the fine-tuned model.
Distributed Training
Use Huggingface Accelerate
accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
Example config for LoRA training
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
Use DeepSpeed
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
    --deepspeed ds_config.json \
    ... # arguments (same as above)
Example config for full-parameter training with DeepSpeed ZeRO-2
{
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "zero_allow_untested_optimizer": true,
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "initial_scale_power": 16,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 5e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 5e8,
    "overlap_comm": false,
    "contiguous_gradients": true
  }
}
Merge LoRA weights and export model
python src/export_model.py \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --template default \
    --finetuning_type lora \
    --export_dir path_to_export \
    --export_size 2 \
    --export_legacy_format False
Warning
Merging LoRA weights into a quantized model is not supported.
Tip
Use
--export_quantization_bit 4and--export_quantization_dataset data/c4_demo.jsonto quantize the model after merging the LoRA weights.
Inference with OpenAI-style API
python src/api_demo.py \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --template default \
    --finetuning_type lora
Tip
Visit
http://localhost:8000/docsfor API documentation.
Inference with command line
python src/cli_demo.py \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --template default \
    --finetuning_type lora
Inference with web browser
python src/web_demo.py \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --template default \
    --finetuning_type lora
Evaluation
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --template vanilla \
    --finetuning_type lora \
    --task mmlu \
    --split test \
    --lang en \
    --n_shot 5 \
    --batch_size 4
Predict
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --do_predict \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_checkpoint \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --output_dir path_to_predict_result \
    --per_device_eval_batch_size 1 \
    --max_samples 100 \
    --predict_with_generate \
    --fp16
Warning
Use
--per_device_train_batch_size=1for LLaMA-2 models in fp16 predict.
Tip
We recommend using
--per_device_eval_batch_size=1and--max_target_length 128at 4/8-bit predict.
Projects using LLaMA Factory
- Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [arxiv]
 - Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [arxiv]
 - Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [arxiv]
 - Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [arxiv]
 - Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [arxiv]
 - Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [arxiv]
 - Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [arxiv]
 - Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [arxiv]
 - Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [arxiv]
 - Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [arxiv]
 - Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [arxiv]
 - Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [arxiv]
 - Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [arxiv]
 - Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [arxiv]
 - Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [arxiv]
 - Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [arxiv]
 - StarWhisper: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
 - DISC-LawLLM: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
 - Sunsimiao: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
 - CareGPT: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
 - MachineMindset: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
 
Tip
If you have a project that should be incorporated, please contact via email or create a pull request.
License
This repository is licensed under the Apache-2.0 License.
Please follow the model licenses to use the corresponding model weights: Baichuan2 / BLOOM / ChatGLM3 / DeepSeek / Falcon / Gemma / InternLM2 / LLaMA / LLaMA-2 / Mistral / Phi-1.5/2 / Qwen / XVERSE / Yi / Yuan
Citation
If this work is helpful, please kindly cite as:
@Misc{llama-factory,
  title = {LLaMA Factory},
  author = {hiyouga},
  howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
  year = {2023}
}
Acknowledgement
This repo benefits from PEFT, QLoRA and FastChat. Thanks for their wonderful works.
