LLaMA-Factory/examples/mllm/sft_llava.sh
BUAADreamer 31bce63a10 add llava and instructblip
Former-commit-id: cfb485eddff0130422416b50c50e171fccc8103e
2024-04-25 00:22:43 +08:00

32 lines
890 B
Bash

#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft_mm \
--do_train \
--model_name_or_path llava-hf/llava-1.5-7b-hf \
--dataset mllm_instruct_example \
--dataset_dir data \
--template default \
--finetuning_type lora \
--lora_target all \
--output_dir saves/llava-1.5-7b/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 3 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--logging_steps 1 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 100 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--bf16