#!/bin/bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft_mm \ --do_train \ --model_name_or_path llava-hf/llava-1.5-7b-hf \ --dataset mllm_instruct_example \ --dataset_dir data \ --template default \ --finetuning_type lora \ --lora_target all \ --output_dir saves/llava-1.5-7b/lora/sft \ --overwrite_cache \ --overwrite_output_dir \ --cutoff_len 1024 \ --preprocessing_num_workers 16 \ --per_device_train_batch_size 3 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 1 \ --lr_scheduler_type cosine \ --logging_steps 1 \ --warmup_steps 20 \ --save_steps 100 \ --eval_steps 100 \ --evaluation_strategy steps \ --load_best_model_at_end \ --learning_rate 5e-5 \ --num_train_epochs 100 \ --max_samples 3000 \ --val_size 0.1 \ --plot_loss \ --bf16