mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 09:52:14 +08:00 
			
		
		
		
	Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
		
			
				
	
	
		
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2025 the ROLL team and the LlamaFactory team.
 | 
						|
#
 | 
						|
# This code is modified from the ROLL library.
 | 
						|
# https://github.com/alibaba/ROLL/blob/main/mcore_adapter/tools/convert.py
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
import os
 | 
						|
from typing import Optional
 | 
						|
 | 
						|
import fire
 | 
						|
import torch
 | 
						|
from mcore_adapter.models.converter.post_converter import convert_checkpoint_to_hf, convert_checkpoint_to_mca
 | 
						|
from mcore_adapter.training_args import DistributingParallelArguments
 | 
						|
from mcore_adapter.utils import get_logger
 | 
						|
from transformers import AutoConfig
 | 
						|
 | 
						|
 | 
						|
logger = get_logger(__name__)
 | 
						|
 | 
						|
 | 
						|
def convert_mca_to_hf(
 | 
						|
    checkpoint_path: str,
 | 
						|
    output_path: str = "./output",
 | 
						|
    bf16: bool = False,
 | 
						|
    fp16: bool = False,
 | 
						|
    convert_model_max_length: Optional[int] = None,
 | 
						|
):
 | 
						|
    """Convert megatron checkpoint to HuggingFace format.
 | 
						|
 | 
						|
    Args:
 | 
						|
        checkpoint_path: Path to the checkpoint to convert
 | 
						|
        output_path: Path to save the converted checkpoint
 | 
						|
        bf16: Use bfloat16 precision
 | 
						|
        fp16: Use float16 precision
 | 
						|
        convert_model_max_length: Change the model_max_length in hf config.json
 | 
						|
    """
 | 
						|
    if bf16 and fp16:
 | 
						|
        raise ValueError("bf16 and fp16 cannot be both True.")
 | 
						|
 | 
						|
    torch_dtype = None
 | 
						|
    if bf16:
 | 
						|
        torch_dtype = torch.bfloat16
 | 
						|
    elif fp16:
 | 
						|
        torch_dtype = torch.float16
 | 
						|
 | 
						|
    convert_checkpoint_to_hf(checkpoint_path, output_path, torch_dtype=torch_dtype)
 | 
						|
 | 
						|
    if convert_model_max_length is not None:
 | 
						|
        config = AutoConfig.from_pretrained(output_path, trust_remote_code=True)
 | 
						|
        config.model_max_length = convert_model_max_length
 | 
						|
        config.save_pretrained(output_path)
 | 
						|
 | 
						|
 | 
						|
def convert(
 | 
						|
    checkpoint_path: str,
 | 
						|
    output_path: str = "./output",
 | 
						|
    bf16: bool = False,
 | 
						|
    fp16: bool = False,
 | 
						|
    convert_model_max_length: Optional[int] = None,
 | 
						|
    tensor_model_parallel_size: int = 1,
 | 
						|
    pipeline_model_parallel_size: int = 1,
 | 
						|
    expert_model_parallel_size: int = 1,
 | 
						|
    virtual_pipeline_model_parallel_size: Optional[int] = None,
 | 
						|
):
 | 
						|
    """Convert checkpoint between MCA and HuggingFace formats.
 | 
						|
 | 
						|
    Args:
 | 
						|
        checkpoint_path: Path to the checkpoint to convert
 | 
						|
        output_path: Path to save the converted checkpoint
 | 
						|
        bf16: Use bfloat16 precision
 | 
						|
        fp16: Use float16 precision
 | 
						|
        convert_model_max_length: Change the model_max_length in hf config.json
 | 
						|
        tensor_model_parallel_size: Tensor model parallel size
 | 
						|
        pipeline_model_parallel_size: Pipeline model parallel size
 | 
						|
        expert_model_parallel_size: Expert model parallel size
 | 
						|
        virtual_pipeline_model_parallel_size: Virtual pipeline model parallel size
 | 
						|
    """
 | 
						|
    if bf16 and fp16:
 | 
						|
        raise ValueError("bf16 and fp16 cannot be both True.")
 | 
						|
 | 
						|
    mca_config_path = os.path.join(checkpoint_path, "mca_config.json")
 | 
						|
    from_mca = os.path.exists(mca_config_path)
 | 
						|
 | 
						|
    if not from_mca:
 | 
						|
        dist_args = DistributingParallelArguments(
 | 
						|
            tensor_model_parallel_size=tensor_model_parallel_size,
 | 
						|
            pipeline_model_parallel_size=pipeline_model_parallel_size,
 | 
						|
            expert_model_parallel_size=expert_model_parallel_size,
 | 
						|
            virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size,
 | 
						|
        )
 | 
						|
 | 
						|
        convert_checkpoint_to_mca(
 | 
						|
            checkpoint_path,
 | 
						|
            output_path,
 | 
						|
            dist_args,
 | 
						|
            bf16=bf16,
 | 
						|
            fp16=fp16,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        convert_mca_to_hf(
 | 
						|
            checkpoint_path=checkpoint_path,
 | 
						|
            output_path=output_path,
 | 
						|
            bf16=bf16,
 | 
						|
            fp16=fp16,
 | 
						|
            convert_model_max_length=convert_model_max_length,
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    fire.Fire(convert)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |