98 Commits

Author SHA1 Message Date
Yaowei Zheng
3fe6f0febd [ci] update docker workflow (#9231) 2025-10-05 02:50:55 +08:00
Yaowei Zheng
40d3691e9e [misc] fix moe models (#9230) 2025-10-05 02:41:02 +08:00
Yaowei Zheng
af8437095a [ci] Change macOS version (#9229) 2025-10-05 02:18:30 +08:00
codingma
2e2f92701f [model] add qwen3-vl-30b (#9227) 2025-10-04 14:12:37 +08:00
Yaowei Zheng
7d60b840ef [v1] support switch v1 backend (#9226) 2025-10-02 15:59:19 +08:00
Yaowei Zheng
1d96c62df2 [v1] add v1 folders (#9225) 2025-10-02 15:25:57 +08:00
Yaowei Zheng
a0d44c650a [misc] add data files (#9224) 2025-10-02 14:02:07 +08:00
Yaowei Zheng
bcc2c1fd8f [misc] move wechat out (#9223) 2025-10-02 02:06:09 +08:00
Yaowei Zheng
7dd910f067 [misc] lint (#9221) 2025-10-01 22:58:58 +08:00
krli
d10d65e4ce [docker] update Dockerfile to set no_proxy and fix pydantic version (#8651) 2025-10-01 14:33:47 +08:00
Ben Feuer
1c44b60e3e [feat] fp8 training (#8960)
Co-authored-by: Benjamin Feuer <penfever@gmail.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-01 14:32:53 +08:00
Yaowei Zheng
e2b1594d31 [data] fix reasoning template (#9219) 2025-09-30 18:11:45 +08:00
h7878778h
09dedf144f [npu] Redirect SDPA to torch_npu.npu_fusion_attention (opt-in, ZeRO-3 safe, no impact off NPU) (#8972) 2025-09-30 18:11:31 +08:00
魅影
a04d777d7f [cli] support lazy import (#9217)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-09-30 18:02:26 +08:00
Yaowei Zheng
6ffebe5ff7 [data] fix qwen omni plugin (#9204)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-09-28 01:02:29 +08:00
xvxuopop
0761a4448f [model] add qwen3-vl/qwen3-omni (#9196)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-09-27 01:21:47 +08:00
wangshaofei
abc3b1e1c4 [docs] update ling-v2 to the readme (#9188) 2025-09-24 15:23:21 +08:00
Hertz
344c760cc1 [model] supported ERNIE4.5 Text Models (#9165)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-09-22 11:48:26 +08:00
Yaowei Zheng
80fe3a172d [model] add dots ocr (#9176) 2025-09-21 23:34:19 +08:00
Yaowei Zheng
800934b507 [assets] update readme (#9143) 2025-09-16 17:04:19 +08:00
Yaowei Zheng
e2ba32598d [assets] update readme (#9137) 2025-09-15 23:45:57 +08:00
Yaowei Zheng
812720909e [model] add qwen3 next (#9130) 2025-09-14 03:16:25 +08:00
Yaowei Zheng
260b5625c3 [assets] update wechat (#9129) 2025-09-14 03:05:08 +08:00
Yaowei Zheng
52488ac974 [deps] upgrade transformers to 4.56.1 (#9128) 2025-09-14 02:26:39 +08:00
Kingsley
610a3f1094 [data] Fix qwen_2vl with valuehead (#9078) 2025-09-14 02:22:20 +08:00
wangshaofei
a22dab97fd [data] bailing template v2 & openai data converter (#9112) 2025-09-14 02:20:34 +08:00
Yaowei Zheng
db223e3975 [misc] update readme (#9071) 2025-09-03 17:22:54 +08:00
Kingsley
7e710c6d3e [misc] update InternVL constants (#9046) 2025-08-29 13:30:28 +08:00
Kingsley
185f0556d4 [model] support Internvl3_5 (#9028) 2025-08-28 17:12:00 +08:00
Kingsley
1c675522fd [data] Fix glm4v mmplugin when not expand (#9029) 2025-08-27 11:45:24 +08:00
tc-mb
6c777375b7 [model] Support MiniCPM-V 4.5 (#9022) 2025-08-26 19:27:28 +08:00
Kingsley
9c433f6b41 [model] fix kimivl (#9018) 2025-08-25 16:32:23 +08:00
Yaowei Zheng
ec41ef08aa [misc] fix constants (#9008) 2025-08-23 23:04:30 +08:00
Kingsley
0ab0be9df2 [model] support Seed-OSS (#8992)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-08-23 22:38:24 +08:00
Zeju Qiu
c14a5fefee [assets] fix readme error with OFT (#9000)
Co-authored-by: Zeju <zqiu@g003.internal.cluster.is.localnet>
2025-08-23 21:32:19 +08:00
Haian Huang(深度眸)
1664657d80 [model] Support Intern-S1-mini (#8976) 2025-08-20 23:52:51 +08:00
Kingsley
022a326ca4 [misc] update glm4v ligerkernel (#8978) 2025-08-20 23:39:56 +08:00
Yaowei Zheng
c1e1f24f5f [misc] fix gemma template (#8970) 2025-08-20 03:18:18 +08:00
Yaowei Zheng
2c31279316 [assets] update wechat (#8962) 2025-08-19 02:55:09 +08:00
Zeju Qiu
003a2acb1a [feature] adding orthogononal finetuning (OFT) to llama factory (#8623)
Co-authored-by: Zeju <zqiu@g003.internal.cluster.is.localnet>
Co-authored-by: Zeju <zqiu@login2.is.localnet>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-08-18 18:22:47 +08:00
XLXW
1ada15981a [feature] add support for dft loss (#8917) 2025-08-15 23:29:57 +08:00
Kingsley
936f4fd78e [feature] Support MPO (#8930) 2025-08-15 15:09:59 +08:00
Kingsley
41648020db [data] Fix MiniCPMO default system prompt (#8906) 2025-08-13 23:05:20 +08:00
Yaowei Zheng
b8272a874b [assets] update wechat & readme (#8899) 2025-08-12 22:45:55 +08:00
Yaowei Zheng
e695fdfa70 [model] add qwen3 nothink (#8869) 2025-08-11 23:17:32 +08:00
Kingsley
893edb26d0 [model] support GLM4.5V (#8876) 2025-08-11 21:45:14 +08:00
Yaowei Zheng
dc61e78e77 [hparams] fix data args (#8863) 2025-08-08 15:35:50 +08:00
golangboy
ef507ae8e0 [file] Resolve file lock issue when deleting safetensors on Windows (#8839) 2025-08-08 14:59:54 +08:00
Kingsley
c244b1edb9 [model] add qwen3-4b-i/t (#8851) 2025-08-07 19:39:26 +08:00
kahlun
8a5d6c8a74 [data-loader] Allow dataset_dir to accept a dict for in-memory dataset_info (#8845) 2025-08-07 16:26:59 +08:00
Yaowei Zheng
b523543994 [data] fix template (#8827) 2025-08-06 06:58:09 +08:00
Yaowei Zheng
4dfad24902 [model] add gpt oss (#8826) 2025-08-06 05:56:46 +08:00
davidlightmysterion
c709c0378d [train] fix adjusting logits size after adding special tokens (#8823) 2025-08-05 20:35:07 +08:00
Yaowei Zheng
b5071f4b2c [assets] update readme & supporters (#8818) 2025-08-05 11:00:53 +08:00
Dennis Huang
4a9ca24122 [model] Support MiniCPM-V 4.0 (#8813) 2025-08-04 12:57:21 +08:00
Yaowei Zheng
cb03eb422d [model] Qwen3-30B-A3B-Thinking-2507 (#8788) 2025-07-30 23:05:12 +08:00
Yaowei Zheng
a416ab48d8 [deps] upgrade vllm to 0.10.0 (#8787) 2025-07-30 22:26:38 +08:00
Yaowei Zheng
d64651a637 [assets] update readme (#8784) 2025-07-30 17:57:17 +08:00
Yaowei Zheng
7c223c432b [model] add qwen3 2507 model (#8783) 2025-07-30 17:19:19 +08:00
Kingsley
52882d01c3 [model] support keye-vl-8b (#8776) 2025-07-29 21:24:08 +08:00
Kingsley
4e0bf35eb4 [model] update glm4.5 (#8770) 2025-07-29 19:57:29 +08:00
Yaowei Zheng
8efa506c16 [model] add qwen3 2507 models (#8750) 2025-07-25 20:21:47 +08:00
Kingsley
d6767f355a [model] add glm4moe (#8689) 2025-07-25 19:53:45 +08:00
Yaowei Zheng
c6e2871944 [assets] update readme (#8739) 2025-07-24 23:13:24 +08:00
Steven sun
9d6565d1a8 [model] support granite4 (#8680) 2025-07-21 14:15:36 +08:00
Kingsley
1639e4b587 [data] fix gemma3n mmplugin (#8627) 2025-07-14 13:32:57 +08:00
Kingsley
9c9b307d33 [model] add Devstral-Small-2507 (#8614) 2025-07-11 18:59:53 +08:00
Yaowei Zheng
cf13964c4c [webui] fix elems (#8587) 2025-07-08 21:16:42 +08:00
Kingsley
542fa97a72 [data] support glm4.1v video training (#8571) 2025-07-08 16:29:44 +08:00
Yaowei Zheng
7f8e5f52f9 [webui] fix abort finish (#8569) 2025-07-07 23:07:46 +08:00
Yaowei Zheng
12ed792db9 [webui] support other hub (#8567) 2025-07-07 22:18:48 +08:00
Yaowei Zheng
4b0ec83928 [deps] bump transformers to 4.49.0 (#8564) 2025-07-07 20:31:50 +08:00
Redwood-Digital
1b1ec9bfb6 [docs] add nvidia-container-toolkit to Linux Docker setup instructions (#8557) 2025-07-06 19:37:08 +08:00
Vivek Iyer
e0dfdb7dbb Revert "[model] add lora dropout to unsloth" - requested feature already exists (#8554)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-07-05 11:25:31 +08:00
wjunLu
17ab40793b [ci] Add workflow for building NPU image (#8546)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-07-04 20:56:59 +08:00
Vivek Iyer
0686206020 [model] add lora dropout to unsloth (#8548)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-07-04 14:56:36 +08:00
Ze-Yi LIN
16f13d304b [tracking] fix swanlab hparams (#8532)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-07-02 22:08:44 +08:00
Yaowei Zheng
57524751e0 [assets] update issue template (#8530) 2025-07-02 19:29:58 +08:00
Yaowei Zheng
906b31fd47 [assets] update readme (#8529) 2025-07-02 17:42:27 +08:00
Kingsley
bede213da7 [assets] update readme (#8519) 2025-07-02 15:38:38 +08:00
Kingsley
e9f70daabe [model] add gemma3n (#8509) 2025-07-01 22:37:24 +08:00
Yaowei Zheng
cbb65567a9 [assets] update wechat (#8517) 2025-07-01 21:23:48 +08:00
Injae Ryou
a5a93597b1 [parser] update config loading to use OmegaConf #7793 (#8505) 2025-07-01 21:05:13 +08:00
Kingsley
d17a672251 [model] add GLM-4.1V (#8462) 2025-06-30 01:09:41 +08:00
Liu Jiajun
4f0da0aec9 [data] fix gemma2 eos token (#8480)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-06-27 18:19:15 +08:00
Yaowei Zheng
2c26ce6ac4 Merge commit from fork 2025-06-26 13:55:42 +08:00
Yaowei Zheng
abc6ce6168 [assets] update readme (#8461) 2025-06-25 22:15:03 +08:00
Yaowei Zheng
4407231a3b [webui] upgrade webui and fix api (#8460) 2025-06-25 21:59:58 +08:00
Yaowei Zheng
f276b9a963 [model] do not force load processor (#8457) 2025-06-25 19:43:00 +08:00
Yaowei Zheng
48897e5b16 [data] fix audio reader (#8448) 2025-06-24 20:53:20 +08:00
Yaowei Zheng
9cd81aa424 [misc] fix ci (#8441) 2025-06-24 16:37:32 +08:00
Kingsley
ecbccb4c5d [model] Add mistral-small 3.2 & kimi-dev (#8433) 2025-06-24 14:59:47 +08:00
Yaowei Zheng
9af7915f7b [model] add kimi vl 2506 (#8432) 2025-06-23 17:56:48 +08:00
Vivek Iyer
7b252b2368 [model] unsloth resume from checkpoint bug (#8423)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-06-23 16:43:54 +08:00
Dhia Eddine Rhaiem
88a92be808 [model] add support for Falcon H1 (#8403) 2025-06-18 16:51:23 +08:00
Yaowei Zheng
c6c764388c [assets] update readme (#8396) 2025-06-17 16:15:20 +08:00
Yaowei Zheng
3e392473d1 [misc] set dev version (#8389) 2025-06-17 01:39:25 +08:00
Yaowei Zheng
ad345ec054 [ci] add docker version (#8390) 2025-06-17 01:37:47 +08:00
136 changed files with 52618 additions and 1061 deletions

View File

@@ -1 +1,8 @@
blank_issues_enabled: false
contact_links:
- name: 📚 FAQs | 常见问题
url: https://github.com/hiyouga/LLaMA-Factory/issues/4614
about: Reading in advance is recommended | 建议提前阅读
- name: Discussions | 讨论区
url: https://github.com/hiyouga/LLaMA-Factory/discussions
about: Please ask fine-tuning questions here | 请在这里讨论训练问题

View File

@@ -18,13 +18,23 @@ on:
- "requirements.txt"
- "docker/**"
- ".github/workflows/*.yml"
release:
types:
- published
jobs:
build:
strategy:
fail-fast: false
matrix:
device:
- "cuda"
- "npu"
runs-on: ubuntu-latest
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.device }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
environment:
@@ -33,27 +43,48 @@ jobs:
steps:
- name: Free up disk space
run: |
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache
df -h
uses: jlumbroso/free-disk-space@v1.3.1
with:
tool-cache: true
docker-images: false
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Get llamafactory version
id: version
run: |
if [ "${{ github.event_name }}" = "release" ]; then
echo "tag=$(python setup.py --version)" >> "$GITHUB_OUTPUT"
else
echo "tag=latest" >> "$GITHUB_OUTPUT"
fi
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
if: github.event_name != 'pull_request'
if: ${{ github.event_name != 'pull_request' }}
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push Docker image
- name: Login to Quay
if: ${{ github.event_name != 'pull_request' && matrix.device == 'npu' }}
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ vars.QUAY_ASCEND_USERNAME }}
password: ${{ secrets.QUAY_ASCEND_TOKEN }}
- name: Build and push Docker image (CUDA)
if: ${{ matrix.device == 'cuda' }}
uses: docker/build-push-action@v6
with:
context: .
@@ -61,6 +92,21 @@ jobs:
build-args: |
EXTRAS=metrics,deepspeed,liger-kernel
push: ${{ github.event_name != 'pull_request' }}
tags: docker.io/hiyouga/llamafactory:latest
tags: |
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Build and push Docker image (NPU)
if: ${{ matrix.device == 'npu' }}
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
file: ./docker/docker-npu/Dockerfile
push: ${{ github.event_name != 'pull_request' }}
tags: |
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
quay.io/ascend/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
cache-from: type=gha
cache-to: type=gha,mode=max

View File

@@ -19,7 +19,7 @@ jobs:
ISSUE_TITLE: ${{ github.event.issue.title }}
run: |
LABEL=""
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾)
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾 910)
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
for KEYWORD in ${NPU_KEYWORDS[@]}; do
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then

View File

@@ -6,14 +6,14 @@ on:
branches:
- "main"
paths:
- "**.py"
- "**/*.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**.py"
- "**/*.py"
- "requirements.txt"
- ".github/workflows/*.yml"
@@ -30,19 +30,19 @@ jobs:
os:
- "ubuntu-latest"
- "windows-latest"
- "macos-13"
- "macos-latest"
transformers:
- null
include: # test backward compatibility
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.45.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.49.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.51.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.53.0"
runs-on: ${{ matrix.os }}
@@ -75,6 +75,12 @@ jobs:
run: |
python -m pip install "transformers==${{ matrix.transformers }}"
- name: Update accelerate to avoid mac os ci errors (before accelerate 1.11.0)
if: ${{ matrix.os == 'macos-latest' }}
run: |
python -m pip uninstall -y accelerate
python -m pip install "git+https://github.com/huggingface/accelerate.git"
- name: Cache files
id: hf-hub-cache
uses: actions/cache@v4

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v6.0.0
hooks:
- id: check-ast
- id: check-added-large-files
@@ -15,13 +15,13 @@ repos:
args: ['--branch', 'main']
- repo: https://github.com/asottile/pyupgrade
rev: v3.17.0
rev: v3.20.0
hooks:
- id: pyupgrade
args: [--py38-plus]
args: [--py39-plus]
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.6.9
rev: v0.13.2
hooks:
- id: ruff
args: [--fix]

129
README.md
View File

@@ -5,16 +5,16 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-614-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Alaya](assets/alaya_new.svg)](https://docs.alayanew.com/docs/documents/newActivities/llamafactory/?utm_source=LLaMA-Factory)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Lab4ai](assets/thirdparty/lab4ai.svg)](https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory)
[![Open in Online](assets/thirdparty/online.svg)](https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
@@ -25,13 +25,8 @@
### Supporters ❤️
<a href="https://warp.dev/llama-factory">
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/ab8dd143-b0fd-4904-bdc5-dd7ecac94eae">
</a>
#### [Warp, the agentic terminal for developers](https://warp.dev/llama-factory)
[Available for MacOS, Linux, & Windows](https://warp.dev/llama-factory)
| <div style="text-align: center;"><a href="https://warp.dev/llama-factory"><img alt="Warp sponsorship" width="400" src="assets/sponsors/warp.jpg"></a><br><a href="https://warp.dev/llama-factory" style="font-size:larger;">Warp, the agentic terminal for developers</a><br><a href="https://warp.dev/llama-factory">Available for MacOS, Linux, & Windows</a> | <a href="https://serpapi.com"><img alt="SerpAPI sponsorship" width="250" src="assets/sponsors/serpapi.svg"> </a> |
| ---- | ---- |
----
@@ -41,7 +36,7 @@
</div>
👋 Join our [WeChat group](assets/wechat.jpg), [NPU user group](assets/wechat_npu.jpg) or [Alaya NeW user group](assets/wechat_alaya.png).
👋 Join our [WeChat](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/main.jpg), [NPU](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/npu.jpg), [Lab4AI](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/lab4ai.jpg), [LLaMA Factory Online](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/online.jpg) user group.
\[ English | [中文](README_zh.md) \]
@@ -51,11 +46,14 @@ https://github.com/user-attachments/assets/3991a3a8-4276-4d30-9cab-4cb0c4b9b99e
Choose your path:
- **Documentation**: https://llamafactory.readthedocs.io/en/latest/
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/en/latest/
- **Documentation (AMD GPU)**: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/notebooks/fine_tune/llama_factory_llama3.html
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Local machine**: Please refer to [usage](#getting-started)
- **PAI-DSW (free trial)**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Alaya NeW (cloud GPU deal)**: https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **Official Course**: https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online**: https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
@@ -74,6 +72,7 @@ Choose your path:
- [Data Preparation](#data-preparation)
- [Quickstart](#quickstart)
- [Fine-Tuning with LLaMA Board GUI](#fine-tuning-with-llama-board-gui-powered-by-gradio)
- [LLaMA Factory Online](#llama-factory-online)
- [Build Docker](#build-docker)
- [Deploy with OpenAI-style API and vLLM](#deploy-with-openai-style-api-and-vllm)
- [Download from ModelScope Hub](#download-from-modelscope-hub)
@@ -90,7 +89,7 @@ Choose your path:
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), [Muon](https://github.com/KellerJordan/Muon), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), [Muon](https://github.com/KellerJordan/Muon), [OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc.
@@ -99,27 +98,41 @@ Choose your path:
### Day-N Support for Fine-Tuning Cutting-Edge Models
| Support Date | Model Name |
| ------------ | ------------------------------------------------------------ |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / InternLM 3 / MiniCPM-o-2.6 |
| ------------ | -------------------------------------------------------------------- |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 |
## Blogs
- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese)
- 💡 [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
- [Fine-tune a mental health LLM using LLaMA-Factory](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune GPT-OSS for Role-Playing using LLaMA-Factory](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory) (Chinese)
- [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese)
- [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English)
- [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
<details><summary>All Blogs</summary>
- [Fine-tune Llama3.1-70B for Medical Diagnosis using LLaMA-Factory](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese)
- [LLaMA Factory: Fine-tuning the DeepSeek-R1-Distill-Qwen-7B Model for News Classifier](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) (Chinese)
- [A One-Stop Code-Free Model Fine-Tuning \& Deployment Platform based on SageMaker and LLaMA-Factory](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) (Chinese)
- [LLaMA Factory Multi-Modal Fine-Tuning Practice: Fine-Tuning Qwen2-VL for Personal Tourist Guide](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) (Chinese)
- [LLaMA Factory: Fine-tuning the LLaMA3 Model for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese)
- [LLaMA Factory: Fine-tuning Llama3 for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese)
</details>
## Changelog
[25/08/22] We supported **[OFT](https://arxiv.org/abs/2306.07280)** and **[OFTv2](https://arxiv.org/abs/2506.19847)**. See [examples](examples/README.md) for usage.
[25/08/20] We supported fine-tuning the **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** models. See [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) to get started.
[25/08/06] We supported fine-tuning the **[GPT-OSS](https://github.com/openai/gpt-oss)** models. See [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) to get started.
<details><summary>Full Changelog</summary>
[25/07/02] We supported fine-tuning the **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** model.
[25/04/28] We supported fine-tuning the **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** model family.
[25/04/21] We supported the **[Muon](https://github.com/KellerJordan/Muon)** optimizer. See [examples](examples/README.md) for usage. Thank [@tianshijing](https://github.com/tianshijing)'s PR.
@@ -130,8 +143,6 @@ Choose your path:
[25/04/06] We supported fine-tuning the **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** model. See [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) to get started.
<details><summary>Full Changelog</summary>
[25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started.
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
@@ -252,7 +263,7 @@ Choose your path:
## Supported Models
| Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | ------------------- |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
@@ -260,17 +271,25 @@ Choose your path:
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4/glmz1 |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3](https://huggingface.co/OpenGVLab) | 1B/2B/8B/14B/38B/78B | intern_vl |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Ling 2.0 (mini/flash)](https://huggingface.co/inclusionAI) | 16B/100B | bailing_v2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
@@ -280,7 +299,7 @@ Choose your path:
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
@@ -293,11 +312,13 @@ Choose your path:
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen3 (MoE)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/235B | qwen3 |
| [Qwen3 (MoE/Instruct/Thinking/Next)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/80B/235B | qwen3/qwen3_nothink |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen)* | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Seed Coder](https://huggingface.co/ByteDance-Seed) | 8B | seed_coder |
| [Qwen3-VL](https://huggingface.co/Qwen)* | 235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
@@ -321,16 +342,16 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
## Supported Training Approaches
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA | OFT | QOFT |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!TIP]
> The implementation details of PPO can be found in [this blog](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html).
@@ -348,6 +369,11 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [CCI3-HQ (zh)](https://huggingface.co/datasets/BAAI/CCI3-HQ)
- [CCI3-Data (zh)](https://huggingface.co/datasets/BAAI/CCI3-Data)
- [CCI4.0-M2-Base-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Base-v1)
- [CCI4.0-M2-CoT-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-CoT-v1)
- [CCI4.0-M2-Extra-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Extra-v1)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -385,6 +411,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [Infinity Instruct (zh)](https://huggingface.co/datasets/BAAI/Infinity-Instruct)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
@@ -443,7 +470,7 @@ huggingface-cli login
| python | 3.9 | 3.10 |
| torch | 2.0.0 | 2.6.0 |
| torchvision | 0.15.0 | 0.21.0 |
| transformers | 4.45.0 | 4.50.0 |
| transformers | 4.49.0 | 4.50.0 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.14.0 | 0.15.1 |
@@ -462,13 +489,13 @@ huggingface-cli login
\* *estimated*
| Method | Bits | 7B | 14B | 30B | 70B | `x`B |
| ------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
| ----------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
| Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB |
| Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB |
| Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
| Freeze/LoRA/GaLore/APOLLO/BAdam/OFT | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
| QLoRA / QOFT | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
| QLoRA / QOFT | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
| QLoRA / QOFT | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
## Getting Started
@@ -485,7 +512,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation
```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, dev
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, openmind, swanlab, dev
#### Install from Docker Image
@@ -620,7 +647,7 @@ Please refer to [data/README.md](data/README.md) for checking the details about
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
You can also use **[Easy Dataset](https://github.com/ConardLi/easy-dataset)** or **[GraphGen](https://github.com/open-sciencelab/GraphGen)** to create synthetic data for fine-tuning.
You can also use **[Easy Dataset](https://github.com/ConardLi/easy-dataset)**, **[DataFlow](https://github.com/OpenDCAI/DataFlow)** and **[GraphGen](https://github.com/open-sciencelab/GraphGen)** to create synthetic data for fine-tuning.
### Quickstart
@@ -645,6 +672,10 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
llamafactory-cli webui
```
### LLaMA Factory Online
Read our [documentation](https://docs.llamafactory.com.cn/docs/documents/quickstart/getstarted/?utm_source=LLaMA-Factory).
### Build Docker
For CUDA users:

View File

@@ -5,16 +5,16 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-614-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Alaya](assets/alaya_new.svg)](https://docs.alayanew.com/docs/documents/newActivities/llamafactory/?utm_source=LLaMA-Factory)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Lab4ai](assets/thirdparty/lab4ai.svg)](https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory)
[![Open in Online](assets/thirdparty/online.svg)](https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
@@ -25,13 +25,8 @@
### 赞助商 ❤️
<a href="https://warp.dev/llama-factory">
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/ab8dd143-b0fd-4904-bdc5-dd7ecac94eae">
</a>
#### [Warp面向开发者的智能终端](https://warp.dev/llama-factory)
[适用于 MacOS、Linux 和 Windows](https://warp.dev/llama-factory)
| <div style="text-align: center;"><a href="https://warp.dev/llama-factory"><img alt="Warp sponsorship" width="400" src="assets/sponsors/warp.jpg"></a><br><a href="https://warp.dev/llama-factory" style="font-size:larger;">Warp面向开发者的智能终端</a><br><a href="https://warp.dev/llama-factory">适用于 MacOS、Linux 和 Windows</a> | <a href="https://serpapi.com"><img alt="SerpAPI sponsorship" width="250" src="assets/sponsors/serpapi.svg"> </a> |
| ---- | ---- |
----
@@ -41,7 +36,7 @@
</div>
👋 加入我们的[微信群](assets/wechat.jpg)、[NPU 用户群](assets/wechat_npu.jpg)或 [九章智算云算力优惠群](assets/wechat_alaya.png)。
👋 加入我们的[微信群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/main.jpg)、[NPU 用户群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/npu.jpg)、[大模型实验室群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/lab4ai.jpg) 或 [LLaMA Factory Online 用户群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/online.png)。
\[ [English](README.md) | 中文 \]
@@ -52,12 +47,15 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
选择你的打开方式:
- **入门教程**https://zhuanlan.zhihu.com/p/695287607
- **微调视频教程**https://www.bilibili.com/video/BV1djgRzxEts/
- **框架文档**https://llamafactory.readthedocs.io/zh-cn/latest/
- **框架文档(昇腾 NPU**https://ascend.github.io/docs/sources/llamafactory/
- **Colab免费**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW免费试用**https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **九章智算云(算力优惠活动)**https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **官方课程**https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online在线微调**https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
@@ -76,6 +74,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- [数据准备](#数据准备)
- [快速开始](#快速开始)
- [LLaMA Board 可视化微调](#llama-board-可视化微调由-gradio-驱动)
- [LLaMA Factory Online 在线微调](#llama-factory-online-在线微调)
- [构建 Docker](#构建-docker)
- [利用 vLLM 部署 OpenAI API](#利用-vllm-部署-openai-api)
- [从魔搭社区下载](#从魔搭社区下载)
@@ -92,7 +91,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、[Muon](https://github.com/KellerJordan/Muon)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、[Muon](https://github.com/KellerJordan/Muon)、[OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow、[SwanLab](https://github.com/SwanHubX/SwanLab) 等等。
@@ -101,27 +100,41 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
### 最新模型的 Day-N 微调适配
| 适配时间 | 模型名称 |
| ------------ | ------------------------------------------------------------ |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / InternLM 3 / MiniCPM-o-2.6 |
| ------------ | -------------------------------------------------------------------- |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 |
## 官方博客
- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文)
- 💡 [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
- [使用 LLaMA-Factory 微调心理健康大模型](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory)(中文)
- [使用 LLaMA-Factory 构建 GPT-OSS 角色扮演模型](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory)(中文)
- [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文)
- [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文)
- [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
<details><summary>全部博客</summary>
- [使用 LLaMA-Factory 微调 Llama3.1-70B 医学诊断模型](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory)(中文)
- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文)
- [LLaMA Factory微调 DeepSeek-R1-Distill-Qwen-7B 模型实现新闻标题分类器](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)(中文)
- [基于 Amazon SageMaker 和 LLaMA-Factory 打造一站式无代码模型微调部署平台 Model Hub](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)(中文)
- [LLaMA Factory 多模态微调实践:微调 Qwen2-VL 构建文旅大模型](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)(中文)
- [LLaMA Factory微调LLaMA3模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文)
- [LLaMA Factory微调 Llama3 模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文)
</details>
## 更新日志
[25/08/22] 我们支持了 **[OFT](https://arxiv.org/abs/2306.07280)** 和 **[OFTv2](https://arxiv.org/abs/2506.19847)** 模型的微调。查看 [examples](examples/README.md) 以使用。
[25/08/20] 我们支持了 **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** 模型的微调。查看 [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) 以使用。
[25/08/06] 我们支持了 **[GPT-OSS](https://github.com/openai/gpt-oss)** 模型的微调。查看 [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) 以使用。
<details><summary>展开日志</summary>
[25/07/02] 我们支持了 **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** 模型的微调。
[25/04/28] 我们支持了 **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** 系列模型的微调。
[25/04/21] 我们支持了 **[Muon](https://github.com/KellerJordan/Muon)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@tianshijing](https://github.com/tianshijing) 的 PR。
@@ -132,8 +145,6 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
[25/04/06] 我们支持了 **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** 模型的微调。查看 [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) 以使用。
<details><summary>展开日志</summary>
[25/03/31] 我们支持了 **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** 模型的微调。查看 [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) 以使用。
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
@@ -254,7 +265,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 模型
| 模型名 | 参数量 | Template |
| ----------------------------------------------------------------- | -------------------------------- | ------------------- |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
@@ -262,17 +273,25 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4/glmz1 |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3](https://huggingface.co/OpenGVLab) | 1B/2B/8B/14B/38B/78B | intern_vl |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Ling 2.0 (mini/flash)](https://huggingface.co/inclusionAI) | 16B/100B | bailing_v2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
@@ -282,7 +301,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
@@ -295,11 +314,13 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen3 (MoE)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/235B | qwen3 |
| [Qwen3 (MoE/Instruct/Thinking/Next)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/80B/235B | qwen3/qwen3_nothink |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen)* | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Seed Coder](https://huggingface.co/ByteDance-Seed) | 8B | seed_coder |
| [Qwen3-VL](https://huggingface.co/Qwen)* | 235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
@@ -350,6 +371,11 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [CCI3-HQ (zh)](https://huggingface.co/datasets/BAAI/CCI3-HQ)
- [CCI3-Data (zh)](https://huggingface.co/datasets/BAAI/CCI3-Data)
- [CCI4.0-M2-Base-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Base-v1)
- [CCI4.0-M2-CoT-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-CoT-v1)
- [CCI4.0-M2-Extra-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Extra-v1)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -387,6 +413,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [Infinity Instruct (zh)](https://huggingface.co/datasets/BAAI/Infinity-Instruct)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
@@ -445,7 +472,7 @@ huggingface-cli login
| python | 3.9 | 3.10 |
| torch | 2.0.0 | 2.6.0 |
| torchvision | 0.15.0 | 0.21.0 |
| transformers | 4.45.0 | 4.50.0 |
| transformers | 4.49.0 | 4.50.0 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.14.0 | 0.15.1 |
@@ -487,7 +514,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation
```
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、dev
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、openmind、swanlab、dev
#### 从镜像安装
@@ -622,7 +649,7 @@ pip install .
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
您也可以使用 **[Easy Dataset](https://github.com/ConardLi/easy-dataset)** **[GraphGen](https://github.com/open-sciencelab/GraphGen)** 构建用于微调的合成数据。
您也可以使用 **[Easy Dataset](https://github.com/ConardLi/easy-dataset)**、**[DataFlow](https://github.com/OpenDCAI/DataFlow)** 和 **[GraphGen](https://github.com/open-sciencelab/GraphGen)** 构建用于微调的合成数据。
### 快速开始
@@ -647,6 +674,10 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli webui
```
### LLaMA Factory Online 在线微调
详情阅读该[文档](https://docs.llamafactory.com.cn/docs/documents/quickstart/getstarted/?utm_source=LLaMA-Factory)。
### 构建 Docker
CUDA 用户:

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 47 KiB

BIN
assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.0 KiB

BIN
assets/sponsors/warp.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

1
assets/thirdparty/colab.svg vendored Normal file
View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

1
assets/thirdparty/discord.svg vendored Normal file
View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="115" height="20" role="img" aria-label="LLaMA Factory"><title>LLaMA Factory</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="115" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="24" height="20" fill="#5865f2"/><rect x="24" width="91" height="20" fill="#555"/><rect width="115" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><image x="5" y="3" width="14" height="14" xlink:href=""/><text aria-hidden="true" x="685" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">LLaMA Factory</text><text x="685" y="140" transform="scale(.1)" fill="#fff" textLength="810">LLaMA Factory</text></g></svg>

After

Width:  |  Height:  |  Size: 2.8 KiB

92
assets/thirdparty/dsw.svg vendored Normal file
View File

@@ -0,0 +1,92 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="130px" height="20px" viewBox="0 0 130 20" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>最终方案备份 6</title>
<defs>
<linearGradient x1="50%" y1="-11.4084043%" x2="50%" y2="107.220074%" id="linearGradient-1">
<stop stop-color="#FF7717" offset="0%"></stop>
<stop stop-color="#FF4707" offset="100%"></stop>
</linearGradient>
<linearGradient x1="50%" y1="0%" x2="50%" y2="107.220074%" id="linearGradient-2">
<stop stop-color="#FFFFFF" stop-opacity="0.15" offset="0%"></stop>
<stop stop-color="#FFFFFF" stop-opacity="0.05" offset="100%"></stop>
</linearGradient>
<path d="M6.45596591,3.88139205 C6.45596591,4.65080492 6.31628788,5.31486742 6.03693182,5.87357955 C5.75757576,6.43229167 5.37523674,6.86257102 4.88991477,7.16441761 C4.4045928,7.4662642 3.85061553,7.6171875 3.22798295,7.6171875 C2.60535038,7.6171875 2.05078125,7.4662642 1.56427557,7.16441761 C1.07776989,6.86257102 0.695430871,6.43229167 0.417258523,5.87357955 C0.139086174,5.31486742 0,4.65080492 0,3.88139205 C0,3.11197917 0.139086174,2.44791667 0.417258523,1.88920455 C0.695430871,1.33049242 1.07776989,0.900213068 1.56427557,0.598366477 C2.05078125,0.296519886 2.60535038,0.145596591 3.22798295,0.145596591 C3.85061553,0.145596591 4.4045928,0.296519886 4.88991477,0.598366477 C5.37523674,0.900213068 5.75757576,1.33049242 6.03693182,1.88920455 C6.31628788,2.44791667 6.45596591,3.11197917 6.45596591,3.88139205 Z M5.53622159,3.88139205 C5.53622159,3.26349432 5.43442235,2.74147727 5.23082386,2.31534091 C5.02722538,1.88920455 4.7508286,1.56664299 4.40163352,1.34765625 C4.05243845,1.12866951 3.66122159,1.01917614 3.22798295,1.01917614 C2.79237689,1.01917614 2.40056818,1.12866951 2.05255682,1.34765625 C1.70454545,1.56664299 1.42814867,1.88920455 1.22336648,2.31534091 C1.01858428,2.74147727 0.916193182,3.26349432 0.916193182,3.88139205 C0.916193182,4.49928977 1.01858428,5.02130682 1.22336648,5.44744318 C1.42814867,5.87357955 1.70454545,6.1961411 2.05255682,6.41512784 C2.40056818,6.63411458 2.79237689,6.74360795 3.22798295,6.74360795 C3.66122159,6.74360795 4.05243845,6.63411458 4.40163352,6.41512784 C4.7508286,6.1961411 5.02722538,5.87357955 5.23082386,5.44744318 C5.43442235,5.02130682 5.53622159,4.49928977 5.53622159,3.88139205 Z" id="path-3"></path>
<path d="M8.59629794,9.56321023 L8.59629794,2.06321023 L9.46987749,2.06321023 L9.46987749,2.93323864 L9.56575817,2.93323864 C9.6273112,2.83380682 9.71372218,2.7101089 9.82499112,2.56214489 C9.93626006,2.41418087 10.0954693,2.28219697 10.302619,2.16619318 C10.5097686,2.05018939 10.7885328,1.9921875 11.1389116,1.9921875 C11.593457,1.9921875 11.9953273,2.10582386 12.3445224,2.33309659 C12.6937174,2.56036932 12.9665631,2.88470644 13.1630593,3.30610795 C13.3595555,3.72750947 13.4578036,4.22703598 13.4578036,4.8046875 C13.4578036,5.38470644 13.3595555,5.88600852 13.1630593,6.30859375 C12.9665631,6.73117898 12.6949012,7.05669981 12.3480735,7.28515625 C12.0012459,7.51361269 11.6029267,7.62784091 11.1531161,7.62784091 C10.8074722,7.62784091 10.5298917,7.57043087 10.3203746,7.4556108 C10.1108576,7.34079072 9.94809718,7.20821496 9.83209339,7.05788352 C9.71608961,6.90755208 9.6273112,6.78030303 9.56575817,6.67613636 L9.49828658,6.67613636 L9.49828658,9.56321023 L8.59629794,9.56321023 Z M9.48053089,4.79048295 C9.48053089,5.19294508 9.5397165,5.54805871 9.65808771,5.85582386 C9.77645893,6.16358902 9.94868904,6.40329072 10.1747781,6.57492898 C10.4008671,6.74656723 10.6772638,6.83238636 11.0039684,6.83238636 C11.3448775,6.83238636 11.6301521,6.74183239 11.8597923,6.56072443 C12.0894324,6.37961648 12.2622544,6.13458807 12.3782582,5.8256392 C12.494262,5.51669034 12.5522638,5.17163826 12.5522638,4.79048295 C12.5522638,4.4140625 12.4954457,4.07433712 12.3818093,3.77130682 C12.2681729,3.46827652 12.0965347,3.22857481 11.8668945,3.0522017 C11.6372544,2.8758286 11.3496123,2.78764205 11.0039684,2.78764205 C10.672529,2.78764205 10.3937648,2.87168561 10.1676758,3.03977273 C9.94158677,3.20785985 9.77054036,3.44164299 9.65453658,3.74112216 C9.53853279,4.04060133 9.48053089,4.39038826 9.48053089,4.79048295 Z" id="path-4"></path>
<path d="M17.8164584,7.63139205 C17.2885228,7.63139205 16.8333855,7.5147964 16.4510465,7.28160511 C16.0687075,7.04841383 15.774555,6.72170928 15.5685891,6.30149148 C15.3626232,5.88127367 15.2596402,5.39180871 15.2596402,4.83309659 C15.2596402,4.27201705 15.3626232,3.77840909 15.5685891,3.35227273 C15.774555,2.92613636 16.0627889,2.5929214 16.4332908,2.35262784 C16.8037927,2.11233428 17.2376232,1.9921875 17.7347823,1.9921875 C18.0259755,1.9921875 18.3112501,2.0407197 18.5906061,2.13778409 C18.8699622,2.23484848 19.1238684,2.38991477 19.3523249,2.60298295 C19.5807813,2.81605114 19.7618893,3.09659091 19.8956487,3.44460227 C20.0294082,3.79261364 20.096288,4.21875 20.096288,4.72301136 L20.096288,5.08522727 L15.8562311,5.08522727 L15.8562311,4.33948864 L19.1907482,4.33948864 C19.1907482,4.04119318 19.1309707,3.77485795 19.0114158,3.54048295 C18.8918609,3.30610795 18.7231819,3.12085701 18.5053789,2.98473011 C18.2875758,2.84860322 18.0307103,2.78053977 17.7347823,2.78053977 C17.4104451,2.78053977 17.1304972,2.85984848 16.8949385,3.01846591 C16.6593798,3.17708333 16.47768,3.3836411 16.3498391,3.6381392 C16.2219982,3.89263731 16.1580777,4.16666667 16.1580777,4.46022727 L16.1580777,4.98224432 C16.1580777,5.37997159 16.2279167,5.71732955 16.3675948,5.99431818 C16.5072728,6.27130682 16.7014016,6.48200758 16.9499811,6.62642045 C17.1985607,6.77083333 17.4885701,6.84303977 17.8200095,6.84303977 C18.0354451,6.84303977 18.2301658,6.81226326 18.4041715,6.75071023 C18.5781772,6.6891572 18.7291005,6.59682765 18.8569414,6.47372159 C18.9847823,6.35061553 19.0830304,6.19673295 19.1516857,6.01207386 L20.018163,6.22514205 C19.9329357,6.50686553 19.7891147,6.75307765 19.5866999,6.96377841 C19.3842851,7.17447917 19.1327463,7.3384233 18.8320834,7.4556108 C18.5314205,7.5727983 18.1928789,7.63139205 17.8164584,7.63139205 Z" id="path-5"></path>
<path d="M23.0521052,4.24715909 L23.0521052,7.51775568 L22.1501165,7.51775568 L22.1501165,2.06321023 L23.0165938,2.06321023 L23.0165938,2.92613636 L23.0876165,2.92613636 C23.2154574,2.64441288 23.4107699,2.41832386 23.673554,2.24786932 C23.9363381,2.07741477 24.2736961,1.9921875 24.6856279,1.9921875 C25.0549461,1.9921875 25.3780995,2.06794508 25.6550881,2.21946023 C25.9320767,2.37097538 26.1481042,2.59883996 26.3031705,2.90305398 C26.4582368,3.20726799 26.5357699,3.59019886 26.5357699,4.05184659 L26.5357699,7.51775568 L25.6337813,7.51775568 L25.6337813,4.12642045 C25.6337813,3.70738636 25.5248798,3.38008996 25.3070767,3.14453125 C25.0892737,2.90897254 24.7897946,2.79119318 24.4086392,2.79119318 C24.1482226,2.79119318 23.9156232,2.84801136 23.710841,2.96164773 C23.5060588,3.07528409 23.3450739,3.24100379 23.2278864,3.45880682 C23.1106989,3.67660985 23.0521052,3.93939394 23.0521052,4.24715909 Z" id="path-6"></path>
<path d="M32.4028209,7.51775568 L32.4028209,2.06321023 L33.3048096,2.06321023 L33.3048096,7.51775568 L32.4028209,7.51775568 Z M32.8609175,1.171875 C32.690463,1.171875 32.5448664,1.11446496 32.4241278,0.999644886 C32.3033891,0.884824811 32.2430198,0.746922348 32.2430198,0.5859375 C32.2430198,0.424952652 32.3033891,0.287050189 32.4241278,0.172230114 C32.5448664,0.0574100379 32.690463,0 32.8609175,0 C33.0290046,0 33.1734175,0.0574100379 33.2941562,0.172230114 C33.4148948,0.287050189 33.4752641,0.424952652 33.4752641,0.5859375 C33.4752641,0.746922348 33.4148948,0.884824811 33.2941562,0.999644886 C33.1734175,1.11446496 33.0290046,1.171875 32.8609175,1.171875 Z" id="path-7"></path>
<path d="M36.5099554,4.24715909 L36.5099554,7.51775568 L35.6079668,7.51775568 L35.6079668,2.06321023 L36.474444,2.06321023 L36.474444,2.92613636 L36.5454668,2.92613636 C36.6733077,2.64441288 36.8686202,2.41832386 37.1314043,2.24786932 C37.3941883,2.07741477 37.7315463,1.9921875 38.1434781,1.9921875 C38.5127963,1.9921875 38.8359497,2.06794508 39.1129383,2.21946023 C39.389927,2.37097538 39.6059544,2.59883996 39.7610207,2.90305398 C39.916087,3.20726799 39.9936202,3.59019886 39.9936202,4.05184659 L39.9936202,7.51775568 L39.0916315,7.51775568 L39.0916315,4.12642045 C39.0916315,3.70738636 38.98273,3.38008996 38.764927,3.14453125 C38.5471239,2.90897254 38.2476448,2.79119318 37.8664895,2.79119318 C37.6060728,2.79119318 37.3734734,2.84801136 37.1686912,2.96164773 C36.963909,3.07528409 36.8029241,3.24100379 36.6857366,3.45880682 C36.5685491,3.67660985 36.5099554,3.93939394 36.5099554,4.24715909 Z" id="path-8"></path>
<path d="M45.9636541,7.51775568 L45.9636541,0.245028409 L48.460103,0.245028409 C49.0306522,0.245028409 49.4988104,0.347419508 49.8645774,0.552201705 C50.2303445,0.756983902 50.5020064,1.03456439 50.6795632,1.38494318 C50.85712,1.73532197 50.9458984,2.12713068 50.9458984,2.56036932 C50.9458984,2.99597538 50.85712,3.38955966 50.6795632,3.74112216 C50.5020064,4.09268466 50.2309363,4.37204072 49.866353,4.57919034 C49.5017696,4.78633996 49.0365708,4.88991477 48.4707564,4.88991477 L46.7022905,4.88991477 L46.7022905,4.06605114 L48.4210405,4.06605114 C48.8021958,4.06605114 49.1093691,3.99976326 49.3425604,3.8671875 C49.5757517,3.73461174 49.7456143,3.55527936 49.8521484,3.32919034 C49.9586825,3.10310133 50.0119496,2.84682765 50.0119496,2.56036932 C50.0119496,2.27391098 49.9586825,2.01822917 49.8521484,1.79332386 C49.7456143,1.56841856 49.5745679,1.39204545 49.3390092,1.26420455 C49.1034505,1.13636364 48.7927261,1.07244318 48.4068359,1.07244318 L46.9082564,1.07244318 L46.9082564,7.51775568 L45.9636541,7.51775568 Z" id="path-9"></path>
<path d="M52.7664895,7.51775568 L51.7757224,7.51775568 L54.4284213,0.245028409 L55.4404952,0.245028409 L58.093194,7.51775568 L57.102427,7.51775568 L54.9646429,1.4453125 L54.9078247,1.4453125 L52.7664895,7.51775568 Z M53.0647849,4.67684659 L56.8041315,4.67684659 L56.8041315,5.49715909 L53.0647849,5.49715909 L53.0647849,4.67684659 Z" id="path-10"></path>
<polygon id="path-11" points="60.949413 0.245028409 60.949413 7.51775568 60.0048107 7.51775568 60.0048107 0.245028409"></polygon>
<polygon id="path-12" points="66.5090177 3.46946023 66.5090177 4.29332386 63.3129949 4.29332386 63.3129949 3.46946023"></polygon>
<path d="M71.1487393,7.51775568 L68.8724609,7.51775568 L68.8724609,0.245028409 L71.2410689,0.245028409 C71.9489287,0.245028409 72.5549893,0.390033144 73.0592507,0.680042614 C73.5635121,0.970052083 73.9505859,1.38553504 74.2204723,1.92649148 C74.4903587,2.46744792 74.6253018,3.11434659 74.6253018,3.8671875 C74.6253018,4.62476326 74.4897668,5.27639678 74.2186967,5.82208807 C73.9476267,6.36777936 73.5528587,6.78681345 73.0343928,7.07919034 C72.5159268,7.37156723 71.8873757,7.51775568 71.1487393,7.51775568 Z M69.8170632,6.68678977 L71.0919212,6.68678977 C71.6790424,6.68678977 72.1667318,6.57374527 72.5549893,6.34765625 C72.9432469,6.12156723 73.2326645,5.79841383 73.4232422,5.37819602 C73.6138198,4.95797822 73.7091087,4.45430871 73.7091087,3.8671875 C73.7091087,3.28480114 73.6144117,2.78527462 73.4250178,2.36860795 C73.2356238,1.95194129 72.9539003,1.63233902 72.5798473,1.40980114 C72.2057943,1.18726326 71.7405954,1.07599432 71.1842507,1.07599432 L69.8170632,1.07599432 L69.8170632,6.68678977 Z" id="path-13"></path>
<path d="M80.8452792,2.08806818 C80.8026656,1.73532197 80.6339866,1.46129261 80.3392423,1.26598011 C80.044498,1.07066761 79.6805065,0.973011364 79.2472678,0.973011364 C78.9324004,0.973011364 78.6577792,1.02391098 78.4234042,1.12571023 C78.1890292,1.22750947 78.0073294,1.36659564 77.8783048,1.54296875 C77.7492802,1.71934186 77.6847678,1.91998106 77.6847678,2.14488636 C77.6824004,2.33191288 77.7267896,2.49289773 77.8179355,2.62784091 C77.9090813,2.76278409 78.0256769,2.87464489 78.1677224,2.9634233 C78.3097678,3.0522017 78.4606911,3.12559186 78.6204923,3.18359375 C78.7802934,3.24159564 78.9288493,3.28835227 79.0661599,3.32386364 L79.7941428,3.51917614 C79.9977413,3.57125947 80.2173199,3.6422822 80.4528786,3.73224432 C80.6884374,3.82220644 80.9127508,3.94353693 81.125819,4.0962358 C81.3388872,4.24893466 81.5134847,4.44247159 81.6496116,4.67684659 C81.7857385,4.91122159 81.8538019,5.19649621 81.8538019,5.53267045 C81.8538019,5.93039773 81.7502271,6.28847064 81.5430775,6.6068892 C81.3359279,6.92530777 81.035265,7.17743845 80.6410889,7.36328125 C80.2469127,7.54912405 79.7692849,7.64204545 79.2082053,7.64204545 C78.6802697,7.64204545 78.2239487,7.55741004 77.8392423,7.3881392 C77.4545358,7.21886837 77.1526892,6.98153409 76.9337025,6.67613636 C76.7147158,6.37073864 76.5910178,6.01325758 76.5626088,5.60369318 L77.5285178,5.60369318 C77.5521921,5.87594697 77.6433379,6.10085227 77.8019553,6.27840909 C77.9605728,6.45596591 78.1623957,6.58735795 78.4074241,6.67258523 C78.6524525,6.7578125 78.9181959,6.80042614 79.2046542,6.80042614 C79.5337262,6.80042614 79.8284705,6.74715909 80.0888872,6.640625 C80.3493038,6.53409091 80.5552697,6.38494318 80.7067849,6.19318182 C80.8583,6.00142045 80.9340576,5.77769886 80.9340576,5.52201705 C80.9340576,5.28764205 80.8689535,5.09647254 80.7387451,4.94850852 C80.6085368,4.80054451 80.4345311,4.67980587 80.2167281,4.58629261 C79.998925,4.49277936 79.7621826,4.41051136 79.5065008,4.33948864 L78.6222678,4.09090909 C78.0493512,3.92992424 77.5959894,3.69673295 77.2621826,3.39133523 C76.9283758,3.0859375 76.7614724,2.68702652 76.7614724,2.19460227 C76.7614724,1.78267045 76.8733332,1.42341383 77.0970548,1.11683239 C77.3207764,0.810250947 77.6220311,0.571732955 78.000819,0.401278409 C78.3796069,0.230823864 78.8033758,0.145596591 79.2721258,0.145596591 C79.7479781,0.145596591 80.1699714,0.229640152 80.5381059,0.397727273 C80.9062404,0.565814394 81.1980254,0.796638258 81.413461,1.09019886 C81.6288966,1.38375947 81.742533,1.71638258 81.7543701,2.08806818 L80.8452792,2.08806818 Z" id="path-14"></path>
<polygon id="path-15" points="85.4149214 7.51775568 83.4156317 0.245028409 84.3850919 0.245028409 85.8765692 6.08664773 85.9475919 6.08664773 87.4745805 0.245028409 88.5079612 0.245028409 90.038501 6.08664773 90.1059726 6.08664773 91.5974498 0.245028409 92.5669101 0.245028409 90.5676203 7.51775568 89.6052623 7.51775568 88.0214555 1.82173295 87.9646373 1.82173295 86.3772794 7.51775568"></polygon>
</defs>
<g id="最终方案备份-6" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="编组备份-3">
<rect id="Fill备份-19" fill="url(#linearGradient-1)" x="0" y="0" width="130" height="20" rx="3.33333333"></rect>
<rect id="Fill备份-20" fill="url(#linearGradient-2)" x="2" y="2" width="20" height="16" rx="2.5"></rect>
<g id="产品图标/learn-机器学习备份-10" transform="translate(6.028800, 4.000000)" fill="#FFFFFF" fill-rule="nonzero">
<g id="产品图标/learn-机器学习" transform="translate(0.000000, 0.000000)">
<path d="M8.784,0 C9.4752,0 10.0512,0.576 10.0512,1.2672 C10.0512,1.8432 9.6768,2.3328 9.1584,2.4768 L8.784,4.7232 C9.1008,4.9536 9.3312,5.328 9.3312,5.76 C9.3312,6.4512 8.7552,7.0272 8.064,7.0272 C7.5456,7.0272 7.0848,6.7104 6.8832,6.2496 L5.5008,6.1632 C5.328,6.3648 5.0976,6.48 4.8096,6.48 C4.32,6.48 3.9168,6.0768 3.9168,5.5872 C3.9168,5.2416 4.1184,4.9248 4.4064,4.7808 L4.5216,4.032 C4.3776,3.8592 4.2624,3.6576 4.2624,3.3984 C4.2624,2.9088 4.6656,2.5056 5.1552,2.5056 C5.6448,2.5056 6.048,2.9088 6.048,3.3984 C6.048,3.744 5.8464,4.0608 5.5584,4.2048 L5.4432,4.9536 C5.472,4.9824 5.5008,5.04 5.5296,5.0688 L6.912,5.1552 C7.0848,4.8672 7.344,4.6368 7.6608,4.5504 L8.0352,2.304 C7.8624,2.1888 7.7184,2.016 7.6032,1.8144 L3.8016,1.8144 C3.6576,2.1312 3.3696,2.3904 3.024,2.4768 L2.3616,6.5088 C2.8224,6.768 3.1392,7.2 3.1968,7.7472 L8.1216,8.8416 C8.4384,8.2944 9.0144,7.9488 9.6768,7.9488 C10.6848,7.9488 11.4624,8.7552 11.4624,9.7344 C11.4624,10.7136 10.6848,11.52 9.7056,11.52 C8.7552,11.52 7.9776,10.8 7.92,9.8784 L2.9952,8.784 C2.7072,9.2448 2.1888,9.5328 1.6128,9.5328 C0.72,9.5328 0,8.8128 0,7.92 C0,7.1136 0.576,6.4512 1.3248,6.336 L1.9872,2.304 C1.6128,2.0736 1.4112,1.6992 1.4112,1.2672 C1.4112,0.576 1.9872,0 2.6784,0 C3.168,0 3.6288,0.288 3.8304,0.72 L7.6608,0.72 C7.8624,0.288 8.2944,0 8.784,0 Z" id="Combined-Shape"></path>
</g>
</g>
</g>
<g id="Open-in-PAI-DSW" transform="translate(28.589489, 5.982244)" fill="#FFFFFF" fill-rule="nonzero">
<g id="形状">
<use xlink:href="#path-3"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-3"></use>
</g>
<g id="形状">
<use xlink:href="#path-4"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-4"></use>
</g>
<g id="路径">
<use xlink:href="#path-5"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-5"></use>
</g>
<g id="路径">
<use xlink:href="#path-6"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-6"></use>
</g>
<g id="形状">
<use xlink:href="#path-7"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-7"></use>
</g>
<g id="路径">
<use xlink:href="#path-8"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-8"></use>
</g>
<g id="路径">
<use xlink:href="#path-9"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-9"></use>
</g>
<g id="形状">
<use xlink:href="#path-10"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-10"></use>
</g>
<g id="路径">
<use xlink:href="#path-11"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-11"></use>
</g>
<g id="路径">
<use xlink:href="#path-12"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-12"></use>
</g>
<g id="形状">
<use xlink:href="#path-13"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-13"></use>
</g>
<g id="路径">
<use xlink:href="#path-14"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-14"></use>
</g>
<g id="路径">
<use xlink:href="#path-15"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-15"></use>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 18 KiB

536
assets/thirdparty/lab4ai.svg vendored Normal file
View File

@@ -0,0 +1,536 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 24.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="125" height="20">
<g>
<g>
<defs>
<polygon id="SVGID_1_" points="0,0 126.7,0 126.7,21.5 0,21.5 0,0 "/>
</defs>
<clipPath id="SVGID_2_">
<use xlink:href="#SVGID_1_" style="overflow:visible;"/>
</clipPath>
<g style="clip-path:url(#SVGID_2_);">
<image style="overflow:visible;" width="874" height="148" xlink:href="
GXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAcstJREFUeNrsvQeUHMd5Lvp1z8zm
vFhgkRMBAgRIAowACBDMmZKVRVGURFG0LVv2sy1LTsfv2r73Wrbv8fXxu8fXkhhFiZIlkRIpMSeA
AAEGkACIQAQihw1YbM47O92v/q7umeowM92zM7szu/WRhZ7t6e6prqqu/r/6EyAhISEhISEhISEh
ISGRt1CycZHv/tN76/SQ/rmQEtJ1Rb9CVdRiHUqVqijLFEWForJCW0UxfpK21mejEopZDSV1dRRF
kT0mISEhISEhISEhITGu0HU92VeD0HGSsZROQOvWdGUP29fHmM+2//cPLnhjwknbt7+3/W4o2j26
husYmZqpqiFQIYJmbBWTqKmqSdJUg5QpJmmzPotkzU7KJEGTkJCQkJCQkJCQkMhbKmcndOZWp/26
HmP7TzO+8zxjNb8aK4ELzIz+5L9v/aquj/41+7hUDYWRIGvepE1lfxvaNSJvMMmaT02bIombhISE
hISEhISEhEReUjYHWYtr43Tjs/E3baFHdV3brWjK//y7b13wbE5J2//zD5s/ERuN/jd2xmWcrJmE
TSBuFmnjZC0U166ppsYNDi2bJGsSEhISEhISEhISEpONvJnaNpPIsa2m0b+DmqZtUzR87+//KJjm
zRc7+sO/ffWHMS36IBG1EJE0s4TY34pA2CyNm6Fts5lH2v3Z4qaRSoK4uf3VJHGTkJCQkJCQkJCQ
kMhPqmb7S9S2eZE23SoalXO6ov9n9UDke9/+9rzhMZO2b3/75fL+Uv1Xeix2i0jUnKSNiJwimEba
fNpEf7Y4eYOdxPEdjopJ0iYhISEhISEhISEhkY+UzRGYJJWJJATCpmkWcevTdO2XalHkT/7+wXk9
GZO2P/qfWxqG+rq3s9+4wCBooYiLtHmZSDp92izzSCdpc5lIxmskyZqEhISEhISEhISERCGwtyQa
N09Nm420QdNiw5qmbWa7/vQf/3jxgcCk7cvffrm8ODT0Ifu4mJtDRmDb2ohbKE7e4oSN9jmImit6
pEDcJGGTkJCQkJCQkJCQkJgUxE0gbJ6+bUTYDAIXoxJlxG1TSNG+/vffWnI22U+EvXaWhIZfiGma
QdigWAFFhC0jZSAyBiJkIaGYf4OCjpiaNii2rRjmX/qxSUhISEhISEhISEgUNBQPU0kK3wFO1KxC
ZM2gO7rJetg/uoII214T1fCPf/qvp37335L4uLlI2wPffe6RaHTo2lA4EideFhGzE7KQQeDoMxRe
FMffInHjWjRV0KYp/H4E4iaTZ0tISEhISEhISEhIFBLExNv8s8XMFFMLpxvEjiuvGAeypT7TqZSz
XXeVRqL/wHb9hScvFP/4xl+98MDwQO/DRNgMk8dwxPBli/uzmVvLPDIk+LUpjpD/tuTaYn62OIET
SZokbhISEhISEhISEhIShUvYUiXbjkeVNP3ZyEzSMJHUDRNJ8m9jRTuqx7S/+t6fLP6l83dsmrbh
of6/Jg2ZbhAr0/wRCa2ZqD2zNG5xrZqgXbPt19m1LOImEDaXps3c6rLvJSQkJCQkJCQkJCQKARaX
MTVsTk0bJ2s8Mj6jaSZXQtx8UtdVxE0odX0e+/e+P/3XU79xmknGSdvXvvP8N6JDvYtIg+YkZErc
zDGxdZI04xxdcexX4sRNN7Vsum4PRMJvS5FsTUJCQkJCQkJCQkKiUNkbDzoSN4lUhEiS1hGkHNNM
fiQSNpWbTyp6hJVLikPRL7Gdj3mStuhw/1/FSZalFbPsLqEkSBgcGrX4d2riXF3wYTPPFwmbbtlw
6oJ2TZpFSkhISEhISEhISEgUIuIaNrsuSrSe5JyH8SOKIGkSNVjETecciR0/V9P0r333nw4/9y9/
ubTNRtq++mcv3Dsy3GVo2eLEzXKQE/KtQdyq9n16PKy/9Z25HwmipigJjZtRcRmEREJCQkJCQkJC
QkKi0Dmbxx+64iBuphIuHohE58RNN/gTY0v0pUpESp+PIuUuCNo2g7SNaoNf0h3aNbemzfFZN4ug
SYP4nSJo1gQNm6IrCbKmJwibnufmkTPKWlBZ1IuyoiGUhGMIh3WURwYQCqlGTjpV5YXuxdoqQlqD
ZFuJXC12JAbUwEgYw6MRREdV9AwVsVKM1t5K9A9HoOmyHyQkJCQkJCQkJMYKRZA/E1zHqXWL+7zp
Fneya9qMrY56TdfXuknb8NBGivwIJ/kyiyJsFV1xHaeIJE5JEDdFcZxvfe8I9W/qCvOu6aeXnsW0
krMoD7UjzJonHKaImaH4lkfPVBAyImd6E7ZUxE2St9ySNevvqlKyGR42Ps+o6jcz0jehd7gEpzuq
cOx8PQajEdl4EhISEhISEhISmUqhiXzUSJAzxSJupoyqwFJWCZxJUIKR5SL7r4J9sfK7/3S4wTKR
DN/37ec+PTzQVW7ELDHNFw1NmPBZN7Vk4meNCIq1H8LxIt2zgo8IW4uo6A5mmk+oKTqP2SX7UaJ2
IqyGGWHjRM1O2tQ4WaN9qUlbcg2bJG25J23WNrG6wbe14VFUl57HooZOHD5Xh+OMvA2NhmUjSkhI
SEhISEhIBIQZMTIh5HO501RY6ebXcZNJM94H/a2ZloiaEWEyzsmmxcLqOvbnswZpi0VHbuGRKM0L
xiNOCqaOlmmkbjeVdJpH6qI2Dd4mjwlTyPwkK4vKP0AljoJRNEbKODlTTXJmETRezL+F79zEDS5t
myRrE0ferGItdtBn6oeKEh2r5rRhTk0fdp2eifb+Umk2KSEhISEhISEhkQFxi0ufiJtMxrVtwlYX
lF8QA5YoZgIApZoxikvipE3TY3MTkU4cppG6m6wpVkRI04lOJGy8bonw/XEtm+XHlsd+axF1BAuK
t6JUa4NqadJCqqlZsxeuZUto2Lw0bWQ2KWrXpEnkxBI3O2GzCBzvJ03TjG1D5SDWLjqFnadmoqm7
EjFNlY0oISEhISEhISExBnnUJHMO4pawAkvwLF10OdP1kpiuN1rXCeua3qDHmaE92Ihu05YJ+wTf
Nl3QzimwzB4VG3lLyUfzgMBElGEsjLyMiNYDNRKJa9FIw2Zp1RIatpBB2MhEUiRsvCguE0lJ2vKD
tNnJmr0oSsJxtKo0xojbaew4MRunO2swKombhISEhISEhIRExvKn9cGhbXMEd9StbZyDKRFdQ02c
tGmxWH3clFG3kzfRLFIkcXEtm0XUdEubJjjXifWNJwW3m0bmS9TIuUWbENK6oBIBM3z1LE2auXUW
c7+qJrZE2JzaNpGwSfPICXhgFMX1tydpo/z0mhFi1RiZxeEYVs1pwWC0CK095dJUUkJCQkJCQkJC
wieURIRI2JNsx00fLZPJuNbN47OOIrYRSJum1cV90ERSpgM2rZsuEC7zs6iJ40TNDxnLL8I2v2Q7
wqNNUMMRk3iZpo0qD7RiRIeMm0pSUUyippgaOcXYly7cvwIZ6n98nxfFttoh5slwFsXIRUhbLT7W
y4ujuHR2E94ZmYvOgVLZnhISEhISEhISEhkRt4TSSrdZKbrMI+08LMRKmUDaYjVqKAJBcxffOvcl
HONE8mGaQir2DOCKbb8ZXRIJ97x8cG+rCjejaGi/YRJpES4j55oi5F5TUpeQaj/eFTkShZGfrX9I
xfuHi1FXFcPFC0YmzSOjQ3eQNx1e/9ncOM10GdMqBrCgvhOD0bBMCSAhISEhISEhIZGBLArTbUx3
cCpRGyeYTCp2zhUnbQkapdhVc3BoJGC3v4wzQ4EpFhoatK3xKI+qoFlTLI2boti0b0n3iRo6gax5
5WhLyscnkMsdaYrg356pxHuHIqit1HD31YO4/6Z+VJQWTqcmG3+KYo/IEx/LClxaZadJsKopWNpw
Hme7Kg3SVohjXEJCQkJCQkJCYqLYmkC8bJEjLe6le1iBKXafN4u0ieTM6RAHG0lzqOwEu0uRtCWC
keQ5YYscgRLtgBIOxxWCShpC5k3SYPusKFaOOnux6SvzSNvWM6Di756swq6TRdBHgYERFd9/uRJD
Iwr+/NN97L4Kg6l4NanoCGoucAjrG4kVDI39S/1nH+u8T4uLNCys60TPYDH6R4rkBCQhISEhISEh
IZERabP5tMHbbcdZEqRNR1LTSJGowWZ7CZvznE3TJgYjyWNUansEwqV6kjDXPsVN0kSypnok1TY8
/1xBSPKnHZ56qxS7TxQRczEytlua2p+/WYZPrhnCsrnRSfX0cPKm2AidaoQi0RP9qEJIBwDMreXJ
t/uGJWmTkJCQkJCQkJDIlLQJSq84vUqE+k9J2pxkzEbSRALnYIOKkKvNRtIKQDFDIf6V6DkoYdOM
EaI5owrHXsNfjX+PxGeYJC7pf0j4szkSiSt5klj8THsYP3mj3CAmZgwODvZ5IKrieGsEy+eOTtKn
SBE7hBE3NaFoNtdBuK+ihtKiGGpKh9E5UIZoTKYAkJCQkJCQkJCQyAJpc7mimRaLouLMIm0iKXOR
tDT7RRMzMRhJvqM2fIyRthirfcRuxijchlPTppgaRE9zyBTFahobacuTZnri9TK09IS4hs1ZR1Yq
S3VMiWCXeqJfkpUZVT1o6q7ASKxYTkISEhISEhISEhJBxEzb36l5F0+j5uRWYVtwEVcwBsSTvYkh
/m1+cA7NXCGgDE12vzMIhE3Qkrky1ileWezMoovf6/xsM3FzfBvvrYlvrA9PRPCrt0qNeuuOsJ56
CFgxJ4qLFwyjkKNvKAEeIV1Y6nA/CUBd6SAioZgMRiIhISEhISEhIeGbrfnWtKXzaROjRkKHR542
IWqkM0+bjoTQX0DCrIoBt4Av+KHZt2JESLjzryVJnm1977WdaIxqCh56qQL9o6wfNTthIyvBEOvU
+2/uR12Fnpb6FMxzYxJnPQnrEiN+AoqrbynhthLPsyEhISEhISEhISGRXdKGdD5terIgI6ku4Ige
WUikTRntSRAz2IkaF+ATW2+TR922tTLU8WvoHkFIEtt8wBsflhjFIGy2huFp/K5bOYS7rhqcnE8O
RJNPe3/EtaUepSg8avStJG0SEhISEhISEhK5IG1po0cqSGJfmewCgCt6ZCGRNl3r50mWrZsHzDwJ
3CwO1hZ6Us2MleXcOE/RzWAs/hthorRuPQMKfvhiGWLODidyogLlYR1/cOcAQgUeb8PZF4nQqrqt
v/mY1h3f67Z9BCJtqtS0SUhISEhISEhITARps7O0AAUeLK9AoGiDUMIRTzNHO6Fym0ImSFeCfMWj
RCr5lYPNC09tK8feUzzEvzh4DOLO/vnCxkFcsmDEdd6Z82FD0zS7PlaQz41lGiluxUHsJGOefVlg
41xCQkJCQkJCQmJiSZvn36kikXhxLpiBSCy3JudnXdjnhCrsV8y/LeFfTMstbp2fJ7YRdQ+qa5Ix
QdMGQfsGIUAFLCVd3LHPZD1wBB/Jo2AkTe1hPPFqqRj+M3EfrAPn10fx5et6XXU73xvC7/+fGtRW
afjPb3aiolTLf5Lm7HKzH8WtEF8ViUCrif61+t4qWpJnQUJCQkJCQkJCQsIvd/PSe2kC79I95M6E
eWQK/zXRh000izS4igJ7cm1Ras5XrYSoJUuiPXN+L2rUxGOT/kTeBSHR8fjrZWjuDSd82ax+NP22
vnrDgKcm7UevleNIWwTaOeDZd8tw73V9k+6B4ukr0g9YaR4pISEhISEhISHhl615mkcC3vFEPPYn
SBuEg+CV5C0JcVMcSbj1/OZpLsnb0SqKqHUStWgOTZuTzcZ94BQlryX63ceK8Iu3yhKEzbpf2oaB
VfOG8ZlrBlz3cPBMBE9tK4VmcrnHXi3DLasG0FBdYGaSokbVNtCFfnb0u7PPLR84CQkJCQkJCQkJ
iYxJmyNtmif/cvCqsHixZAm1rc+KY+tlmlkIEKNAWn87I0L6bxUzJ1set8BoTMFDL1eif0SFotmr
aiQLZ39/845elBbZiZim6Xj01Qq094fidrOnO8L48Rvl+LNPdRfmk+OKIpkIPBLvT8WZz9A8BtKl
TUJCQkJCQkJCIrgEiiRMwsk2vL43SJuYa82mcYMjtD+8FRBwKDAKqgWTtVSK7xUr7bb5uRCk+Fd3
l+K1PSVGPzt92TT2zx2r+3HtimHXvbz1USle+KA0YVxralh/ub0cd145gAtnRwuZsyV/Smz9be9z
qWmTkJDwg5ULgZn1wNwZgKoCbZ3AyVbg8GlgYEi2j0R2MbsBuO0qNu4WpT92xwHgpfeAjh7ZbhIS
4yF7Bta0pQr57zKB9HGRgidt6diZLQeb13fJlJf5he4BFT94qYL7HopRZhRO2OrKNDx4Sy9UxR5i
Y2hExf99oQJRTUkQPfBrtPerePS1cvzTV7vM9OuTmLUJx+iStElISKRBYx0Tnq8Gli8AiiPCFwv4
hojbb98CTrSQFYRsL4ksveF0/5KITeaTkJAoHNLmJFx+8gU4fyjP3blSyu82rRngqUVzaltcJY+t
I3++tRwHmoqAmLuOlJftixv6cNHcqOu7X71djp3HS9w2sCb5e+H9MnxqzQDWLB2eHJwN6TmcfMmN
HdNqgKVzgKpyYE4DUFrM98+o5/NIRzcwwobjABtW57uA9h7gyBn2uVsKuBL5DxrXn94IXDCba9e8
MH8G8NnrgZ+9ygmcnFOSI8IklLoqoLIs/bGDw1xzNDg8RRsr4DiabO+zilI+VooiqY/rHeDjJDqa
2/pQrluqT3WF/3NyPYbl85T/pC0ZD4uTNqePWqZp2gqvFfUkvmyw+Tr5s6HMzxY41RbBk5sqoGnc
BDbB1tj/IWBRQxT3UYh/R/1busP40evmTCMGLhEGynBMxX++UInLFw8jEtIL58kJrGlL9K/0aQuO
MHtxLWYC7EULuOahoQYpE7dXlHjvb+kAPjoB7D0KnD7HiN2obFuJ/MN1q/lihKqmPo60cesuAbrf
kSZqqUDC5U1XAFctT3/skbPAi6w9Pz4jOVsuz8lH0DtlzQrglqsc2m0PvHeAj5P2HD93DbXA7WuA
VRf4P6erj9XtXeDtffJ5muzPp1+fNlcgEk82J/qyeWgakrHDwms+PQPhPZXzW37h8TcqjRD/iiNi
pFXt+2/qxbQqt/T7083lONEeTphTwk74rPPfPlyK598vw+9c3VdgfY7M+l1q2vyTtRCweil7QVzO
BdR0Qmw60DWo3HAZcKwJeOEdvo1K8iaRR2Ne1B6nw6KZQHkJEx67ZdslnbWDzLlT3BoiyL3rk6yt
5k4HLpiTnrCN573PnsZLENRU8HNoXugblM/TZGJr2TOP1G25hW1R0OFQ1YnHKIVM2pxRVuAO/+56
uj2L11OQH7aSu46V4qm3yxNBRKz7NjOhX7V4CHdf4U6kfehsMX62tSKRGsDZboJvGxnXPvJqBTZe
1I/aijxPO+0V8t/G2dLbBMsJzB9Iq3b71cC8GUAolP3rL5oFfOvTbIx/DLz2PnC2TZpOSkw8SOAi
wuY3JWdtJRAJyTnFz7Tt+7WOKUzacinA5zFIy0bmyPReyJd7Ly7igWHIsiQoKHhRIysfn5bP01Qn
bUiWp03RPeRWuD8rTplXJG8OFEzOtkmIUU3Bf7xYhaFRRxAR8OiPZRENv39bD0qLdNcD/f2Xq9A9
FPLuPMXxmQnKH7cW4xfbKvF7t3ZPiWdPTmDJQf48n7ueRy8rCuf+91Yv4QTx+e3AO/uBfhmRT2IC
0T8YbPGAfDdjmpxT/AiOQU6Yypq2qSiQB9Gyjde9k7aMtO6ZgM6j8w+fks/TZCdtyQI/Im0gEkwl
fzaecStxP7rwt/2/hC9Tsv8gfMofvLSrAm8dKPVMske+bLev7sfaZf2uWr++rxSv7ClL+LGlGoQm
gSN/uSe3VuK2y/oxryGa133uvU3Vv959LuEGrQ7ecxM3+RqrKWQQ0Iv6E+uBMjbcN+8CevplX0hM
DPqG+PiLxfxpmJvbgcERubjpQ97JnVA6hQnuZGgr0rItmcv9pvNpnMycxksmIG39LHZuTSXQ2Suf
p8k6lwV10oqTNsvU0eusZJZiisOqMH5uIanXnGpFm44SqQ1LU5pHTiy6+lU89EqlEc4fjkTaYILE
tPJRfOPmbh6qX/iuf0jFw69UG1q6lFo2h+aO/m7pCuOx16vw375wPr/723Prt6+leWQy0Avz89fz
FU+/pmHZBPkSUX4iCmJCTtwysIPEROGtPXwBY0Zd6uNII/fuAe7PJueUNNO2Hux4XbI2X8dOhrYi
DRvlQ/SrZRuPe7ciI1eVZX6N2aa2LdvvMvk8TRxbS6tpQ5pI/SJp05PwEE9zSUHeVZyDQC+kVkwV
BTJd0BFnrP/8ufGn3q7CwaZiHuIfcAUSuWdDLxY3umO4PvteJXafKIUe826tsKozQUNJXE64ZRLU
f/1OBe64vA9XXjCY30+O52DV/Y0JOYG5sGIhN4lsrJv4uqy/hG9fkBH5JCYI+47ztBa3XsV91pLh
zV3AniMynLYvoTGggCnNI31KQAXeVuQ3tmwesHBmBtJfDu+dCFumppEW6H1K2rb9x7kJtXyeph5p
s4XaEC4XBpL7sDllVy8lRPwY6cQ24Th9vghPvFFlf8iE4COLZwzjC+vdvmfnuiN49PVqw9TRBXZu
bVkM//K1c3jnUCkee6OGEzuhvyloyWCMknjXYNU3hwokBUCGE54c43HQS+WutcCM2vypExG3pvM8
ZPKAFIglJgCbdgLHm9mzsQ64cJ7dv/PMOb6oQORueES2lS8ikkH+MUna0guShf4+u3ghcOkFGZjj
5/jeZ9Xzd+OYCGmEa+wpp9q5Tvk8TRnSBh/RI53mkck0ay5HOcWD2BXa7OZstWTRWOAjgmQekNZH
Xq9Ca184YRYpaNkU1sn3X9+NhspRVz2f2FyJ051hz/pTAu7PX9ODjcv7sWr+EN76qBSHW0xNnqjF
Y7/59sdleHV3Oe64rDeP+zyAeaRj2UOStgQoJPEnrgHmjMEkknx6yDysqT0hwNJLalo1ML8RKCnK
7Lqf3AB09PKcbjIlgMRE4HgT8H+eSixu0DPS1sWDj0gEF3iCTPMy5H8w8lKIIPPByy4cg4VHju59
ei1/J6Yy1yTtOmnPyopTE05yNyCNXWuHfJ6mDGlzUgskCfnvIl6TJ1XZlMGOo6V45t1KN2GjbYiH
+L/rCjeZ2n+6BE9tr04EHxH9E9mEMrc2ii9cw23NqstiePDmbnznieluHzd2fpRtH36tBtcsH0B1
aWxSP4BTHXeSFmE+EAkYJZLMFinSIyU4PdeRPNpeCXvpLWXXv+ZinpQ7CIGjF+Yn1wNdPVzjIV86
EhOJpjbZBuM230pZZNK3Fb1zKGE1mebn273PbeBkKxVosZJysFGKgorS5MdZJpK7D2fRRFI+TxM/
hyXzzEnHvSzSpsMeLFAVjnGOE1XYL3ICZ3HGqkj2eWInKz19MBLo/nO1TSCiTPB9+JUqDIyqPJG2
o8GLWI/93s0dKI1ots6PaQoeeb0anYOqt5ZNIR+4bsypS4Q4u21VL555rwLbDpcltG1mh5PGdt+Z
Yjy1rRIP3NiZZw/OGDVtRiASHZqcgnDFhcAli/lKoV8QOXvnI+DFd7i5R7pHZiDKXlZHeLn6IuDu
dTy4g1+tHpmWXL0CaO/NfgQuCQmJ8YGGQLE1jOOn6hwdNHJkobbVRQu5li1Q8JFxuHeKZDmzIb32
jyLM0juQjktF2kgLRwSQrnmqVT5Pk5W7peJrGryiR8IjTxtS5Gxz+LgVJhv3CqSpZ1gw4Tf/6p5K
vHmggpu5wsGa2YN/5xW9uGaZOxb61oPleOXDck6+nBFA2XkrZg/hs2u7bPdXFI7hD25tx56TJegZ
UPlvCgm31RDwxJvVuG11H2bXjeThI+MnEIl3kXnaeKRGIkNkxugXZPr45KvAB4eAoQyGBGnmyNzs
q7cDS+b492G4ipG9HQc5aZPaNgmJAhR0gphneURam3JtFbBdC62tyHR+1ZL02qyJuHfSilG90r2f
upkodqKFuwBMT+MPbplInmyRz1Ohs7VU5pHpgta7o0dafm1ITsicLl4QfNukCnXi0DMYwg9fqYdO
KghnxEiFQvzH8MBNXa7zBkdU/ODlWkRjHjMM21Wk6vjW7Z2oKnWvs1y+aBB3XdaLn71dnfhNa7iw
w1t6Inj0jRr87WfPTV0BYpKCHL8pFHE45O94i7C9fzAzwmahpQP45Sbgy7fwl50fjRv53V1+IfcJ
kNo2CYnCnHODykcyEMnkfJ+RJovm89VL8/NdTr5s6cgkBXsjF4EjZ7h554Vprllfzd+3pFUcGpHP
05QhbfCTXNuZiw3J/4aVq60gw/0j0UKAR6AR+FM15ol55H9tq8GB5iK7qaLF2dgkd881nVgyY8jV
P79+twq7TpQmCVoCVES6ML2MkT3dTero0K9e14FN+8vR0h12ETe6JqUQuHN1Dy5blCcpAIKaR8Jt
BjvVSRsRtTUBtWzPvw3s/jg7oc2PnuWR9z57XfoVSgtXLOORJMczBQCRRTLlLGIv2nkzuBkpra6e
7wa6GHls7ZyYgBRe9SKcOgcMDPGgMERuR/PQHdWob4m7PVva87fO+QhKR0DaCqtQhFVqR/Ivpe1Q
nkW0DOyCk0dzdHUFb+PKMr61TOGonakYY7gre8GSAufgSiG6kA+xUecy91jp7ktsxxPL53PSlsws
f9icU/2YTWZbbDPmpum8nVKB2o0CEtH7iPqeSFw6zdzcGZwMHj49tZ+nKUXavII/WnKYmCw7nWkk
HARO1LApevKczLLPc4OTbUV48s0qu6Gy2eAKE7AXN3iH+G/tiuDxzTXxQePsLy02glMtzfibH/Xj
sT+vQm2F+7cXTh/Bveu78K/PTbM7QpqldziER16vx8ULziKi6pPm4ZvKExiZpZCphl8t28fsJbPz
ELfhzxboehcvYgJROc/Tk1ZwYsddtIBr23oHkh9HTuE3XgHU+yCkr78P7D3mFnDpGmtWcmKbKrEq
CWsfHQe27+NtlEtBme5nGRN2rljOcxqVpvFDJF8LEg7IlPXgyczJ9ni2J9WZzGA37+KC0EQ+oxcv
5mknaNylw09fTe+rEqQdqQ0pubdTmCaiTosX61byqHupxiVFXN2ymy+QxPLAmSWI0DiRuceImC2e
zecmWliYXudvDFBAChoDtLC18zAfv2Nqq4Dt6mwrv2OFCNyJZuDd/dzvONcEjhYKqV7Uxl4g8kPz
FmnjaL7P5N7HAtKGzfaRm+1MG0/7QYtM9JmCkqQ7j74n08tDp6bO8zQVSBuc3ArwDKOBlOaRaRJs
I1kONxRYx7oorp8kCck0bxN18zoe31RnmCLaPEVNfzSq0v3Xd6KhIuqayX+ypQYn24uM8+JKNiuN
AyvRwTbERnqw43gVfvzGKP74bm8p/XNrOvH8zgocbC5xR59h1359Xzle21OB2y/Ng0zHgQORuFcr
pvoEtnKRP0GEQC8l0orRSymbbUar0iRUkjA722cC0wvmAO99lJo8khaKrkkBTNKBCI0ipDyhF+o9
N/Eol36iaVIbrl3Jyy4mqP16C3+RZ1NILi8FrlsN3HIlUFPp/zzSYFIh4kHC5G/e4oJ8UGI51vb8
3A1svC3kWkE/db5zLavzxbwt3/2Iaw4nAtS3JFimW3EnEIFO92wEaUdaxacFFeuaJOjexAjfxtWp
Ax6Idad+v2wpJ38vvzc2EpHNadu/lDl+czS1L7UV+fjOn+FvEckJ6hciGVQoIu/2vTzPX1bDvPsQ
4OlebrmKjZVVXGuUDqTtsupN8wQFmNp5KDcLUETEiLBdlsKWkJJQE+mlRZNskxc/IG0YkfVUIGJJ
8zzlEaXfpq0f0kbPJR1DYyXVwmOhP0+StHmTNu/k2kJRHNd1fuelgS88bVqQQCRA6picmJC733W8
DM/sqPTuNPb31Yv7cfcV3a66HThbil9sr4oTPUXsRJpYYoMYGW6FqvBYoD/ZHMZtl+tYOsstUdZW
jOIbN3bgL34604hECcCVbuAHL9dh7ZJ+1JSN5seTEzgQSeL7qey6SeYyJDj6FUxo1ZNM16I5MFs7
dJq//EhY90OS5pumdbqP0RF0BrlyOfCZjbxtMslXR/4ZJPg88RLXFmVD6NlwKXD3NTzpuTKGcL0k
hHzrM7xev3gjmCCZaXuSEPzZ6/nKddC6kznal2/l29c/yK6GN5f3nc3rWecsnMXTXqzKIPkwPStE
9qgdn32LP2uF9mbPKTFn7XLDZaxc7n8Ryy/hv30NsHQuX3zYczS3Y88654LZwCfW84jAgRNVm/PE
1+8EFswEntuefa3bpUv4YkKyhQfSVu45Bhxr9k/asim1EeGlNki3MNJm5iQdMUUhIm2nz/E5L127
0/WJGBI5nWzP0xTjbknbN51EGidtcTLmUC4o4hZJVHXC9wXXs46AKkmTiiPJcV5OguPEXokgff/V
OiPEv+33zJwLxaxXf//mdhSFNNsqia4r+OFrdegaDttHgkCyooMt0GOjUENF7M8YWnqr8djrI/gf
Xxr0nFhuXNmDNYsrse0oI5BR2FIAUFCSAy0l+NlbNaw+5ye2u/XkWx95tae8TxvZ1PtZgbVAAkdX
X+7aa/8JrkGr96HRICGLNE+qklyblYkTP5mtUSqCID5+XiAi/JXb+GfKX5cpcSMtCwlfNzJhsiqL
wuSVy7hA+eOXeRQzP201Ue1JbfCpa7l/y5u7uECXr6zNz3yiZ3A9MtH71EYujGcKmusp1UYsBvxq
y/hofjJtI9drPcdzND0LJERnk7CJIE3tvbcApW/yyLm5aKtsjhUCLZ4RkSU8t43P/dkABZ0iwpZK
i/XBQW5JQSaqfuembL7LyZctnZaNQIsfVKzfNUwkz3EiNyeNto2+p7Lv2OR7nqYKWwuiaUOK6JGq
k4TZSAs8nOFSxWpIsz9fSiZalnwqL+yqxJsflduTOFi+hWzyvPOybqxZ0uc6b8vBcry6p4LncvNQ
l45G+xCNdjHCVgxFZaRNjbDdo/j1OyV45+Miz7qUFml44MYOlJLfmioQNmscsN/6+fYaHG+L5GVb
BiqCieRUK2LginSgFzb5Q5EpR67qQyuOPQFMReY1JszRUhFzv3PwZUuAW68cO2FzEjcysQypwduD
nO+/dDOr01XZJWwWaPX//tu54BBkocNve9L1iWxmqz1vuzphdjTu75cMfEay0Y6ExnquaR2rEG6B
/FgNTYAyke/r7LXneNcpU5DmnjR55I+aq3qRZuzmK7M3ViziRtpC0jqNtY3pGhsYYVu9JPlvkkXH
2/t5EKVMFjjGWui5MHzOfJgv08JHS7v9fMNE0sd6thWEicyuJ+PzNJWLHx4lvgPUTC4wGRrJV2a7
PCzd/SE8+kY9dFV1mSJS8JG60iju39ie8FMzS/9wCA+/Xo+orroeXPozzEiXEmtl36lQGPMjwgaD
tKkYQRW+/0oVhkYUzzqtW9KP21f32Mw0LdMmIojNPRH8eEv9ZOBsU7ZYJoZ+QC8nCmCRy/rQy69v
wP9LaP701KQtiGxMpnuk0ZpRl11BjYgbmbSRwBa0PSii5jUXB9OGBsUiJtxdx4Sy2kofdQrQnqSx
+PS1/gQfv6ip4Hn6aDuuzwqyLDgGaEfq+2sv5RH2sgW6JvmykoA/YfNPwFXtyUDaCBQtkfxSycw5
2/WixRG69iWLs1tnIm5XLedkf6xkaN3FvCQzHaRFQfJfpaBOmQbYGGshE33SBqZzGyDfUDKFdL4X
z7bx/ZoPf2ZaMJvdMDmfJ1n8P9uqF2fJlMMUCvfxV1OM4a5z1xK/eLsWB1tK7GH2TbNIOuKL6zqx
pHHIdd5vdlTj/eNliUTaSqJQQuw7Vvfij24fRihcxsgfadlCbLKMsBI2zCR3HK/FczurktbrgevP
Y1pFjGvbnGAT0jPvVmMn/X6ejYIgfVfgnHNMhQhKiU9/tpOtQP9Q7utE0bf8RjekulvrHOlGRDpc
z4jLzGlj8xdLZRq19mJu0um3HTasYoL6smCEjUxzjjdzv68gwh6tpJPfCAkpfp+wdCD/O/LBysSf
JhUuX8qDsEzk7OJLgMzStYisUaRNP36eQbBwJu+fiZ6ps9We410vCvFOGpVMQvtT2y+Ylf16UY6w
TH3Y0oHSStCCyVjGzKqlfAGiMkXU2PcPcdI2qgW//2yNAbLg8GMaedokZ87zqe6Ug7TNR8AfygNH
BDHde6xQn6epXuCz3+KBSJxh/xXdbS4JwVzSIgm2CCWAPSiGkub7CbMx1T2MR52tlquli8xxsr0E
P3mr1jA5dIG164L6Idy7rsMlhbV0F+HRN+sT54l9wAhbRVEM37ihjZ0fw0u7i/BRcwVULcqOI20b
I3BMOh3Vwnh8cx02Lu9HQ6Xb6Wbx9EF8eUM7/v3l6XZ1rtn3AzEVP3ytHv/x9X6EJiIFgFfUyIB2
ElPVp420FUEEQdKCDQ3nvq1Io0f+X37ICpEgMbJesuExVhCRpBVgivrXWOcv+qEXMSI/DT8JwYnk
3bEGaKjxd22K1Pja+9x81fKdIzMkEuJIW0cruanIKLUhRZij5LCnz6V/3LLRlqSJo/sLSkbI33HR
TL6anY08gb6lnICaNj/T1lhAOaFIKKSFC2rHoNpYEpxJ017HCHD7OAcC1gNK4uMyRyepE43VY03A
gRPARyf48+H0T7U0wBToJV0iZgJFUiWNG2mT0vqJZSlqxFjHi6UlpEKpI4JiQSMnbERQkoHa+K0P
uVlk4PvP0jih+Yi0X40+LC6a2vg85PWbp1v5WElnuWH9Hmn3ms5PoudpisDVjo7A9fCKq4Ekedrg
CD5iS6rtlS/AIyDJJGjSMfDg8cFDb9SjtdcM8e8gxyRokbarrsKdtfeJrXU43RFxBx8xr/H5qzux
tJE7CH3rDg1/9Ag7LFRimEYqSrFB3hRNx5FzFHmyBn94q3dyoc9d3cFIXxUOtZRAH7XXT48B245U
4OU9VbhjVdcE9a/XYA2yBjI1JzDysQqiVaIE0hQIItdtNTjiP0w+aYZUJQVpG0M9Dp4CXn6H5yty
kgPKjUbREC+c5590EIkiHy96yacLpEF+L34SjZPw+NttjLDt4Pm4nMImBTwgInbfbdyHJBXZpHsh
PxjKj5YsaEqm7Un3+8LbPHebWE8SIEnDSVq5IH5vtBJedmj8UgBkYh6Zres5+5u0EBTN77QwXRex
MXjpBcAnNgBL5vi/HgnvpEE53z3+gk5g7Yk+fn1MZm0nWnjQm/cPpie1tBDz8rs8PD7NC7QAkg5E
7khYT7eIM5bbpgWwN3aaRKjH/txR1ELylaXANH7nMDqPUlWQyfPZAASDFgiuXcX9KFORym37+MKT
LdBakHGSBTJC/bKgMb22kgjwqXPJF44sE0k/USSJyFKhcybL8yRJmz8XNBtpE7VsCpIHIlE8crpN
HtKW33j3SCWee7/aziEs4hUCrlrUj7suc79R950tw9Pv1Mb7Lk7YTC3bvPoovrS+PX78LZeO4JZV
Gl7ZX8+I2rDh26aSQlbhqtWfbK3FLZd0Y8lMtxRUzwjjV69tw1//fE78eKuu9JMjowoe2TQNa5f2
oXbCUwBkOOFNwbFOkRdDIf/Hk8BIUedy3VZEDv2aHMXNI/XsSjwkrP1yU3LzlgNMsPhfPwU+vZET
rFTmPiIoVDsJdqny8lCQAhK8/ZitPr2ZCWUfpCaBdA9EmGh1P50WgPznKNnrmbbstefJZp76gEjw
qCNVBAk8VDfKCUUBW8gkyc9CAvkfUvuM23Ob7chsGdSb+pEi+FGycSeppsUUilDa3MHH5JqL/JnI
EVG2fBknYqktyAk5J23m9YmsUTvvyCDiKy14UE42etbSkWdqeyq50spSREKaw4gEuRbG2HN3mD2P
Z8/xZ++OtVxb6AdELmjR5IxPgkGLgxQpkkqyMUnz/VZGLLfvcc8R4x0VkeagVNpAkRC3pMhXSs8k
kbBzXem1dvT9XEbgI6FE6oBCf54kaUsRMdIjV54qdmQynZLz78K3HfURqsWrFSfIK5PIzkOv12NY
U+2JtE0CVqRoePD6NpSGY7bzaFJ7+PUG9IyE7CaVJuEjzcNXN5zH7NqEd2xY1fC7Nw2gqjgKJVTG
BkiEHatypRy7RtdIBP/31enccdajrnet7sZ6RsqIEMIhVFFQkn1nS/H0u7UoxNA++hT1ayPSFg5A
2kgD5vQzmGi/EsvEM1u2/oRntwJPvspftqmuS+1BxwXJw3YhI2QV5amvS0mT/ZhF7v6YawF6B9O3
J5HMj8+kr+diJmiWl2WvPYlMPsYI274TPLdfsmvuZQLmOx/5jxxK2qGiosL2wQoC6rdXdwCv7ODj
Ltk1SQAn7apfLQgtNlSW5bc/23jJKeSv+xtG1v75SWDLh6nbOd2z5kWUXIuhFmnLQZuRNvbxF3ld
Ul2zb4hr6mnhxO8cRgSDit96X7E8/cIWzaGbd/P6jIc/abJCdSQtmx+tPz1rVFJdjzRxp33kQyQy
O38mMGfG5HmeZAnWd6pTBeqZmwqTLQrLWFwEx38ov/xhFbYfqXT7suk8YuRtq3qw/sIe13nbDlXi
jf0V0MTgIxaBYgLsJXP78YnL213nrV7Qj89c1YdQSDX82cQE3GTmuOlAFbYc8g5KEgnF8Ls3nkNZ
WIOu2MmltUrwky11aOoqQmG5hk7dqEVBzSPzMbIcLWDQQkO2XFNp5ZRCTZPJkt+6bt7pz+GcQCTZ
SGYeSRLNs5GbH6XTspGA9TwTtJrb/dfz/QPpTbHod0lLkKx+QdvzrT28TdP2kc6P9WumRyGyySQw
H0PB58JlmrSUlA5jNJb+un5Jg4205XvY/3GoC2lOyKeKIgKO5TqkxSI/tXQkiAT1ijKeciVb6SYI
RNjf3pfIvZiu0JiisUVjzA+o3kRqqn1EcCWTa0o/kErD//FpJnvsTOQ6y/T+szEGKCjIXB8BSMjU
lAgbLUqluh5pMsmM2U8USctcdrI8T7IEjB6ZkfvWpA3X4sy4DIeH4Phr3boGQnhoUwNiQp11y/KQ
TYrVxaP4xnWtPCGacF7/kIKH3piOEU3l5qxiMBhiTpqOB29oQyU73+t3v379eTRWjXCNmUC6SNs2
FFXwyBvT0DsY8jz38gV9+OTlHaSgS5wr5G1r7SvCw+z8wkumMcWXePJteS6IJmeACR2j2bvHZ7by
F22Q+pKgR6ZGfleq6cVs5MbzuNbCRh7sJB1ONHNn/VjMfz2JsI1E0197gVWHMbYnmbmSqVhHt7/6
tTBh80wrNyvKy+XiCVKzkd/e3iPA0TP+rt1lCpS9A3najuOpOpmgQmPfTyJqes6SPmsZtBWRg71H
OQkLUl8aW/uP+Z/DSEtYX5n6mpSc+s61PNF3KvKzaRcf3/kwVmjuW+DDNNIKQJLueiOCiWQ6kHUF
peDwNR6m2PM0FWSwsMhdNEueh91+UvPYKkkKHFZxituaTyIAfvlOPQ63lHLiZWnXrMZmnfGFtR1Y
2uh2VPntrlq8f6LM3uEWeWLn3bKiG9ctS75cPatmBF+/7jz+8dlZ7uifbADsOF6O53bV4J61bvsa
lVX2vg3t2PRRNVp7IoZ2Tux8Im507p2runD5wr6C6QsdbuvUqQBaEY7F/B9fzV7S4XBmNvdBEMRs
k1Y6R2LJ+y/Iu4zMBw+zMjASvM57mZC0crE/PzSKJkamfV51Jk2bn6huBxhJ7B4INm47+vz5Cqaq
XyCtZQc33YwFOKnZjBxa7CM6Z1kpT2syGsv9s6IFPFbzMef4RSfrt/NMuI0GqAQRdCp+fC0pmA/1
99DI+M09WoA20PN4jiZtb0Mt155Pr+Fmg9bffnzESGulqKnvLYhMTn5m5MvW0RuwP1gFjpzli0Hk
U5v2XcDuraoieb0pwuuta3hut2SguYjMUN/am3psBwge6evZSwYjN9tMf/MvmT2ePOfvt86YBM9P
NEpD2zada8un4vNUiNBT7AsU8l9UIijiVjTNcLp6KfBOUF1QzZc6SmCwpYbc4GRbKX6ydRpvbqdP
GnsJLKgdZqSpzVWH1p4iPPZmA48F4jyPTfw1JTzEf0hN/Th++srzePHDKuw8UWEjjdb2kU3TceNF
PZhe7Q6LtKhhAF+65jz+7cWZCaYvnNs9FMbjWxqwcm4fisP6OD4ymUSPNPO0TVGnXCJtWoCZe7yS
0AYx24wK5pFjlXjIjG8ww5QGJCBHfWqIKIpkyCN4ChFVMs0xtHA+hv1CduxIgMTVRLj9RIkz/AST
pVEI0J5kMkpEIEh7GppTnySM2ssKsJXzWSaIOaOfZyRAO1LOve6+YPdJ/lh+SRgRh5TBfHLUnlkP
7pJDULAWyq1mRBacaZK0Wv/BO5KBFnksU+SUbeUT5JdnmewFBY0zvz6lVO9kgYBo0e2WK3l4/1TB
cMgcmiJu9g34GCsBnrtMxwn17Twf6RpIg918Pn29LVAuNyJulG8xHYz8fY08tcRkfp4mFWnLNHok
nNEjIUSMFCNFwhH230HeUsrBhUJ5s5lNPAd4lBGv1v5IYqlD9Eljv/mVjaYJo+P3f/LWNJzsFBJw
C1oy8oH71JWduHh2X9p6U/42CnDyxz8qw6iu2o4nMni2m5FDRrz+4q4znud//urz+O3OGnzcWur6
joKSvLa/Gps+qsFtF3eOP2fLoN+nKmkzzOUCaM1opZBW5X2br2UI8lcq9pkHjUyQUqUhCNKvpNEY
yTClAb3Ioz7JRkmSNAW0el1a7I+wfupaXnJKUvSxtSeRtuGApK3XMnfNo0WEoO8DPwJRoDbpD54s
nRYfgmjOxnsOzNRPcDxBZsyUe41C4pMwne3k5n6JRhCBvKs34Y8bFET2+gf9HUtt4bWwQ4tRRNYo
X10qq4M9R4FX3+d+hNkkJJmOE6r3Ap8Jtcn0+GSr/98ZZET6VAuPLJoujQtpxmnhjhYDOnsn1/Mk
SVuakP9wEDNRy+Ykc4riQdqUwiNtuuO/uCYlzX9I+lf28cGJSvxmd61LQ2UQHjYRrp7bj09edt71
6weayvGr9+o5YXNUjMwrZlcP48vrWn3X+rplnbhxZS1e2VeTyL1mdTur27M763DbpR1GUBMnqkuj
+L0bW/GdJxckfk30b2ObH7w+HeuX9qC8eDTnfW7feo+FtH0+BScw8pUJYh7ZWJ9+VTgrpK3GP2mz
TDyzQdraOoNrhuKEr2fsaQoqAkbzzBVqrYicYyRtnRnk9esdCGbuOF7CR9bztAXRPmagPaHnwm/i
cV2fGNI23vm3/GLhLJ43kMhaeUnux1W690+Q9WPStPUPZk7a+nySNsr36DVHrF0J3LEmtQaSTAUp
EiolFs/meslYxsnsBv/EnMwnyexzxUL/1/eTc9MCaftI69fRMzmeJ0na3No17zxtSAjQSELWXFo2
izxMmg4dayST7GJUU/Hw5ukYHFETDoRCEJGwquObt7SgrMgu/cV0BY+9OR3tg2H3eQqv6zcZiZpV
6z/TLBH1b93ShA+OlaO9L2I3t2SfOwZCxm/+8z0nUBRy29DdsLwTG5bVYMthJmGPOpqLHX6wuQy/
eLce91/bMk7iVObmkUbY/ylqHkkveEpkHfKR08nQtOWYtNHqLSVu9eMbRjjelFqgDUoyRjIkbfSC
HfGpgSxNommrKMkP0paKeGSSMyloVLOgddTH0wp7AkhbRtYAeb7yHsicyyOnUS5ARITSbXxmIzd/
HE8xJeW9BSTrAxmaeJO5XyBNm4O0UXJ3ImxEgJKBzC9fehfYtieY2WPOnhMTRgCSmT5J/Uxecrlo
QHWhlC6F/DxJ0uYvw1ictFnaMmeSba+E2nGNm5iMWy9AlzYgfTR/P/K81/JOFjSPL++pxeYD1Z45
2Yi03XVpF9Yv6Xb9zraD1Xjhw2o3YQOPODm/PoqFDcM42lLGiKE/ZyCFdTAJiJct6screzySQsWA
V/bW4u7VnbjhIreZY2lEM6JbfnC8Ev1ayG7qadbvp9sbjHPn1w/ntr/HyN2m8qrTsWZg6Tygqjz9
sYvYi6S63IxZk6P2IidsXz5dVv2buLCRlLQFeZeNYSyQWYtfwkXBOaKjHqZFoWApGCaEtCG4b1dg
opeHpE0PeHBa0paDaxYE+c2UVCK39SPCRgmmP3MdmwvL8uNZG+++JNNsv4tltEDl1KIvX8BLKlDb
PnAXL9kG5YKj4gXKW/ezV/n7wuu+ySwyiDYsl6A+IFJIli3N5wvzeZKkzZu0eaaNtkib7pChndtk
4TmcShyvfs1fy8lkgUQmXtPWOxQyfNk8w24ywlZbOoqvbmyBM2nbwEgIj2yezjiR6q6Swsl1U0cE
Dzy02NCY0E4lCd9UhJxuZBRIq/1airBD9NUPN83Amgu6UVbktlm6cmEv7lrViV+8N43nbtMTg4hu
40xXEf7rnen4iztP5bjPM2RrcTPJAl2gyAIOnwbWX+KPtJWwl9uqpTxyVmdvbupz5UX+EpsSKEcZ
RUkb1bLzLhtLCKKKAKTNCJ6ie4/YfFz7GksdM4lGPR79NRFtN573mevjx6ONxqt+ZGVAGjYKT58p
YSN/pdZOvqV5iULir1qSXmPnp2/Hq63IX7nE54IZLTqRP3ShvDdTtTMRNtJu+bE2GS/Mn8Hr1XR+
cjzvk5q0+ZBK0+mROGnTkzA+eAcgUZJFkCzIJgxK3pBz0vb0jgYcaC5PBBERqkSr65+9uh0XznCH
yf/NB3XYcbLSSKSteLFpnYRABVFBw2b0pZKOtCmpb9OMCbvndDmefq8B961v9jzs64xovrG/Gm19
EbdPpMZTG9x+aTsWNwyivDiWw0cmKGlLHDOVNW2HTgXI5wTumL/1w2D29n5B2qpLFvsjkIRjZ1Nr
2TKRjjMdC+UBTBvJ/83L12t0ND/GYUqzxhybR45XfwVuk2xHZsvxyriuZ9aWEynoZHUcBcAFc4Br
LvavaaFIgDsP8WTUNH96BdNYs4Inls7GGB6vvrQiQvoBLRA7fYnz+h2aop0X5NjcMRPMa+R1eu8j
mIvxhfM8TTnS5lPT5uXbBpt5JBwkTfRpg4Ooefi1xf3blALqXD3JUsJYEo1nAac7SvDj7dMTSjSB
PJECbV7tEO5b1+r6vZaeYjyxrTHed3EGJm497t02GBSBoMPj95OpVS1Ox7Y/2d6Ajcs6Ma/e7TM3
r24QX7n2HP73S7M9I5D2j4bwg9dm4o9vPYsLGwdy1+djyewwhScwIl+0QkwrjUU+nLDJSXrVBVxQ
6c1ydxIhnFHr30SQTDvTBWgIIvDUmHnoMomOGSSICJEzrzQFFCHQbzCTzbv4in4uxi35xZzvSuHT
FjCSWy7JRkEHIsl1OyJ318+GoKPnAakk7crKhcBFC9IfS8/bb7cBm3byZ3W82iLIfRspBIoym5vJ
X9kvabMC3RTSe9OrnWmBkHJjUkqHfAKNS6oX+QeebCmc50mSNm/S5pxnvQORmIK5kob1ieRONG8r
zLD/6bQtXvuBXJtHPvn2dDR1FXnborLy9Wtb0VDhJkQ/f7cBxzuK3ZEmnVnOdXibXepIbYPlR0PB
hMhTncX4+XsN+M7t3maOn7n8HF7cXYv9TWUJbZ6QwfGtj6uxYs4AGipHUFcezVGfZ2IeyY+b6qtO
+49xoYVC7fvB71zLk39S9K9s+bbRKvctVwENNf6OJ6GE6t3bn72+o98uZqStL4PrGREvfQo8Rv4y
D4EnSOTEw+xRfO19/9HeJmw6zuGz5SfyXlYFvgkUiHI9R+V1yP8ckkoyX1w0Kz1ZOd8NPL2Z5xXz
o/koifCAQzlpjxQgjX85ExnaMvTLrfRpHkrm8bTgVzCatiR1XJiHWjYL5ENO5URz4TxPkrT5IG2O
z3bSJpzs1KrZApDATuBSOroVAm9LZ/XoR7uWJU3bnjOVeJpC9XtosRACrpjfi7tWt7t+61BLOX62
vcEd4MNLw6a4iaBnvylpOI5XP5tmjr94ZzpuW9mJi+e4nZlqy6K4f0Mr/vKXC4xIl7Y6sXNHYgpe
+LAWVy7oQdWCUSNKZs44WwbWsFN9AqOV42su4X4YfrRctCr5ifVAe7d/m3s/RHDBDP9aNtI0nT2f
XoAK0q+1pqYt6FigiJdXLvO/WnskScTL7gCatkWzgbJ92dd2ZlM4kNEjJ07ICnL8RJhL5UsyYFos
8mMWSWZq2/f5X1QhrX1tVXbGcJC+od+lojcHawfS7CyZAyye7ZO09bhJW74L1l7tSITd7z2PN6bX
cTNJWlBIl75DJtfOY9LmmMOTadpUL5k2KI8ptOLfBhI+73xsrUMBEn64qRH9o2F7xEiT1EQYeXlg
YwvKIlHbeXToo1tnomc4nNCyOaoTf9EqwplenxWP75xFScFRzS/6RlQ8tLnR1Ky4r3LHpeexbnGP
QURdmkB2D0fbSvHKR3Vo7wuP+6hI14/2rH5Tr1AYZvJTaw/gp0bBS754M3+xjPX3P3cDsHEVUF7q
77d7rfp2Bx8FqbB0Lg8oErT+ly3nTuN+zCNJ6GttN/PBOa5DL+bT5/zl1yJhg9pr4uba4Gto2b7+
ZLjniW5DTLAMMNF180OuaGGordskKT6uGYlwszu/pobZ7MtZ07j2MGg70CLQikX+6kzt0dLJLQbG
MuYmcj2fysxp/L5LivKzvkbC75k8onIhz5uy+OuzeJ42kYU7E23Hv0sWWlK4RkEo22z2Mh4efy6a
66TA8Eholzle319n5DHTY7BrnxSeEPum5R3YuLTD9Tvb2Dmv7a8x/F5cigeFJ+Yl/yNn1/lZEE7V
j/QdEc3RUW/G/+YhqlctblnR7jpXRQy/f8NZvH+iEoMaz0NHZND6PVpFeOnDWqxd1IXaJVFWfy1L
fe5Y0tCRfGkDDt10/G+56kTatg2X+te2EW6+gnILAj96kft7BAVpqD5zPfA7G4L5FFBd/WjZgmpI
SOCheyLhjHy6/GLNcv8RL0+1cI1asrofPQtcsYyHoU4FIokUYYxI3vDIOM+xAVdzJ0MgkiBSUU4C
kUxCn7ag7Z+L+pE5YUWaBNqUuyxtwCNxQWUmX1TJVt8GtRag+YPM12ku8QsKxkKaNj+guZEWnpxa
R9q350j2+4jmwhl16QNUkckm+Vp75cskE8OBIXtbks8YFT/4+DTw45d56oCxYt3FwJdvBRb7GCM0
jsjf/NCpwniepiJSadrgRTOc1CRO2hw+ba6IkbCbSKbMAyARGN39YTz85izDNFBxmh4yYbWiKIYH
r29mu+0N3D8SxiNbGjEwovLzxEAhJgn69m1ncNn8bmi66m0yGUQQEc5VFQ1nukrwP56Zj+6hsOvY
EU3B42/NxNWLelBd6p4ZV8/rwaeuaMfP3mswgq6Yeb/5rbO/2/sj+O2uBlwwfcAzqMmEcv0pPs7J
sf6ND3gC7SD5aq6/jK/QPsGI21t7+IvRD1ayc+6/E1g+P1hC6ZOtwOvvs7HU5a/PgnYr3Y+hxevy
56+3diVw8eL0JMvCjoOpzYpI0CLTyXT+hdRmX2Pt18IEpY9O5C5v3pjaM8M8bflINnKRpy2XQlYg
Hzwg//O0TaCQSWSByBClyEm3UETzAAVUuuSC7C1sBO1LSstyiJGMU63eBMYJsjC4+iL/C2cnWoDj
ze46v/weL9kGmS/edxsjOytTH/c+m1t//BKbEzvSX5O0WESIFjT6v+cTzdkZg9Qvp1v9kTZ6D1Ad
aXEhpf9yAT1PkrSlSq7tUChAd19EJGwisStI0pYsVItrdkzRgroHu80Av941A/ubyqFqjiY0ydfn
rjyH5TN6Xe378r46vHus2u5naNWfTTQblnTh/vVnXGQvW1g1twcHzpbhsW0zuYZQ/H329+7TFXju
w3rce7XbaJ7q/OU1Z/HGRzVo6Ym40huQYPnWkUqsW1KFuvIRVGQjBUAQTVuSIicwjlfYC/eC2TxB
aVmJ//Om1wB/fg/wpZs54dl3jBfnS4Y0Wdeu4ho9MvvwE61SBJkN/ugF4MhZn1q2DMg4OeJ/50vA
95/lfiyptFhXLge+cTeP8OUHZNa54wD3B0lWr4MngbNtwJyG9GSW2v2+24H/eNpfhLFkAin1xzJG
np/alP46udbg5NpnbjxIRrZ92nIdhTPfo0eSwEoCdjbqR3MSaWOsucnvNReYWplU2qtQiC/i0PPk
e27LQch/CoDy6WtZfdgL+dm3gO6+1ISI5m0ibX5AudkOnOBz8HiNF7/3H2QcU18u9pmbjd47x5sy
sybxAs3vRNroHebn96meNP4/PJIlEib9+POCtHkn1xZNGx352JxaNsXxQ4kTC6r5kB1/tLElq2vq
KcWPt89INKXYnhTiv2YIX17b7Lp+R38RHnlzJk+z4BRK2XnlkRi+ef1Zdhktp6341XVNeGVfDU53
lkLR3IPxsS0zceOyDjRWu9UqC6cN4AtXtuD/e2MuDEWgljC3o2v1DYfxwt5puGROL5bOGGDf6Vno
cy+pyr+PopzAzBdyFHj0eR4JkUxsgmjALFL2hRt5yQX+6zX24vo4mDlgJv1KmsbvMBL6WybwvPAO
e1k7TDHpewrEctsaoKbC/3V3HebJd1MRTuoD0iRSRDNqz3RYvQT4lz8EntvGi9/8eXQPt7P633o1
j5p5rIkLEHlBNgI8+gUd8j9HJCfXJCongg5SE4tvfio7v0uC7xMv8XnEEsippPOnvXoF9+F68hXv
Z6yazQN3XRPc1Hss81S6xZgv3cLb7pdvcM2bqHWj+hK5pPouCBA98egZbqo3Ooq8hN9xTO3iNwAJ
maCTdixbfURtR5pKIm5+2p6OoUWD3R9ncbELUuYZd9IGN2mDS9OmIDOvuIIM958/eGzrTDT3FnHi
5WhDMrH42jVNmOlBeJ58eyZOdJQmzhNIs8IE6E9f0YZL53bnvP7Tq4bx4MZm/N2zi9xDIAac7SnG
41tn4y/vOup5/pfWtODl/XU42FIeXzBQhAG941glthyuw4yqEdSURfPgqZNj3UJPHxu/z3NBPp+i
am3ZzX3ZUq0aZ7Nvyczp8zfyQkSL/DgosiMJQ0SmigM6r5OWjTSZbZ3p6/P2XuDGyzmx8kOc65iQ
+JXbGIlkBOyd/UBXb8LMUhRSaiu4AFDP+nbudIdJp19v9kyjcuTi+PGMgKBn+Xg9B9ccy7FTaQ4U
7pXmE/IxnZYm1QgtaHxyAzfrpnmIni8iQeTLSgL1pUuApfOCWw/4GgsZ9gvVmfynqMQ1jAP8uW+s
T+8j5lpQYvPfzsPAvqPjPFay/JzQ/VOfkZ+cL9JmmjNm855Pt/gnbdRPNH83VPOFAynz5OF8kqxt
/eiPLNImXoc4gOr4rCGu+Invt6LFA/bo8YA7IKATSr60n06JazW21aHpZlRAM5OtppmRAnV7oeNV
xqZs+41rBR/Vu05V49md06DFuPbS1kZsQr90Vi/uXt3muvbhc+V4aud0I/iIK8E5E9xmVQ7j3jVN
sDRDucbtF7fht7un4f1TVUauNhtYHZ/dXY9bL2nDKg8SWVkygt+7vgnf/tkF0BSHT59GvE/Bc7vq
ccWCblwyJ8qIrD6G/tYdW6vp3P1sFTj3ATnWXRYWPj4DPPQb4A8/zYT7GRNfn/cOcA3gmbbcv+89
FzFqg/n5eeGZLTw4wLCPFWo65kcvccEqCHG2NIBjeYdrWW5PLeCzFZRraOP07GoBuaQ2wfeZSX3H
cw7UMHEyo9g/5CNLWhS/z1kQDU222j4bbVVRysoY602m3W/uBvqHx7e//N6/33G8iFIb+Ay6QkSV
xkhTR3afjxPngGPNjFBf4tNEcjaPdNnalZ0xImWe3K4peHmYpYrgT1A9g+bBndjNqbIr5GIL/q9b
pm+a+bdm/i2axWme+zMtI6MKfvjmbPSOhBOEzQogwh7MEPuNB687g/IiR4h/nbRss3CuN+J+khR+
b19e14x5dQMYr0CkFcVRfH3DWRSrMTcjZ3XsGg7jka2zMDSqep5//dI2XLesk6cAcI5ijUhqGV7a
W4/zdM8TEGjV6nte9EnzDGSrUJSs7/0E2H/cv/9YLkDJbP/t59zXKuP7meBJncwiX/8gEYDET6Fo
ZWQOmi0/Ct/ELYvtmfG7JcAC3fi9W4ItHGZ1XGZaZz0Hdc5mm07QgynWgRaCjpzxl2bDL0jQJ40I
afCy1bcTPYmROd+r7/F5KW/His9rLQ6Qm40IPfmzkUljNu+Hrke+bS0+53daPCWtnKoW7vMui588
bclicCB5tHuvCPnJPuseCYontJAmTUtWqcQN244TbtoQ4E2tXCZl86F6bD5Ya1/2sPqA9cjNF7Xj
2iXnXed9cIK0cw08cIfzwWPnXTy7D5+9rHncG3Tj0nbcuLzDO/caq+umQ3XYdKDW89yiUAz3X9OE
ykiMj0bFXsjP7dX99djfVIGRqDLO9wbbQJcTh3f5iBG2f3yCB+QYGWcrVnqpkf/ID57lPmXjQdjo
Pjt6snsfFFjk+8/wUP9B6/7qDu5Xl+06jelFjhwLBrkgmeNM3PLmPgNqWcd9jplgwmYJz7s+BvYe
y95vvLkLeOldf0Qw2wslRECpZBM0/zy/nScXn7D3UZaeE/I3JPJT7dM0lObtMS0YpijkR3zcZxJ0
w6ST1XtGbWEtdk0J0pWEF6X8DHefqXoSxzdP8oXkOQR8788jxjr2iV0wpfOJgRGueVJDcNmWUr4y
Ii/3rz9r+LTZVuViKn7w5hxEdcWmmbNQFNLxuxtPo7x4/D1/KULlg9eeRVVxzD4hmOOHeO9DW+ai
eyjief7l8ztx2yXnDS2j07+SFJwtvUV4ae80tPbkMrulwzQS7n6VE0/ycuYc8PePAr/clIE/WYag
Fcj//XPgp6+YCbTHaTWftIu/ejN7fgNE2Og+Dp/i2spM6k/E9T9+xYlrPpC2XK/mZpoHLp+0QlnX
nORai6VPLU2bs4/oOSWi5SdUfDpQsAgiOGfPZa/9g7QTETaaw/YezR5ho3n42a08AFRejxM/WrbZ
PCedH9CcTZo20sbm4r6IDJIWz68lC9Wb6p+t50nKNznWC/jcbyEsWgsqjvD/nvnZJkUQEt1m6pjw
c0pmAmmdpblZRZJGMIJqeDjwPfXBdOxvrkwk0hYImGoEEWnGytlu/6+X9jbgvePV7miRdC4778bl
7bh2afuEdciFjT24d00zvr9lDvSoUDczBcCh1nI8taMRD2zwzv749fWn8fr+WvQORxClE4X7pLZ6
bX8d1i7uQn1FG8qKRjPsczj6007SbGaRnv0vIymlXJAYAn7wDDdV/OKNwLWruY9EtkHBOn61Gfj1
luxpl4L2Kwk8FEyAgg5UV2T+u9v2AD/8DXsxN489hxqZJVHi2gc/CaxYGDyqpx+0s/YejuYg6iGC
a6kyEXbHQ8hHFu8j18lwA4X8R/7nacsFYbNA2jaa2yLsubr3Vh6EKVPCRkGcyByaIrMGNenL1tj7
wMwFSXkwL5yXeTsRYXnyZW7aPRKd2P4KSty8QCkZiPgs9Bktk7Rsx87mLlImkWBaFKXgVOS/nA7z
ZvC6U1qdWGxsz5OMmJ39uUx3/u2RgQxp87Qp3v2pp4t0X+CkzTKBtEweif0YW2G/IcBTwBJiYBSE
hMwiVcFMzwx7aISsVxNkQPEIuXK6oww/e2e2sWJi82UjsHNnVw7hq2ubXE9JR38xntg+C6OkZXNO
TGyCqS6O4v5rziBCfmUT2B+fv+KMYcp45HypPSiJWeefvzcTt6w4h7m17uyP82v7cc/VzXhm9wyc
7Syxkz6GwVgIz+5uwMWzu7C4IYM3g5CnTffI0Sb2tz03GzeF5UWXE5gP0Krg934MPLMV+PR1wPpL
skPeKKrZG+/z65KNfzYTRWeSFJmCsOw5ysOMU34cJUCUJVqVpVxyW8lhP4v54ylU+Z/+Ow/T/cWb
gCVzx07eSLAjAeDFt3nwGT+C2VRNrp1tgShT88iAb8K8I7+2Nsqj/iEB+unN3If3y4y4rb3YfyRI
8mGjZ4gIjuWDmolpajb60roWLRpR1FsioYHyxoFHmqRIt5Qq4My5PHieENw80guNdZz02KLmpgAF
ILFMI3MFy0TSD2mjgCUW6STfwrE8T5K05QFpg5emzQPO1GuKwNeQ5LuCaj9dd0cSdEUYtJvI2ffb
r6UoSvx7xZTerKAn1ndPvjsbp7pKeE4zj0b72vqzaKxyE5pf7ZqJA+cq7L5s5vlE/r60phkrZ3VP
eJvOqBw2kmb/w3MUDdJ+f6QtO9tbjCcZaf2L24565l37wlXNOMEIX0d/BIPDIdcA23myGq8dbEBd
eRNqM0gBIPabPWqk10TlbfYq5y//+OgEK4/zlx8lZaYk05SclV4mRZH059PK5f4T3Bzx3f38pTWS
R5kfqFDofHoxblgF3HQFv8+SJFa85LtCq+tbPuQkKFdmpCQc0qo3/c6qC4DLlwGrl3KTmRIfFsZU
TxJCTjTzKHA7DwUnliTEkXDrRwu577ipvcvR9UngGR2n9azDjNT+YpO/RQoS3PUs3ieZvPUOBrtP
MiumfH8f+/Bv2p9BP40VdD/0rIxnoB0CLQql6h+K8Pr3jwHrVgJ3X8Of+2R9RGbUdA8vmIseovbj
Y5/jhbQ5hgl4lvpSHCuH2fz1Tz/mfrGUj5HmaEpRkGxuofluqzmH0TyRL/B7/+meE9pP/ot+oxDT
wt2J1tw+FydauGUJjTu/C21ez2qQ5yndMyAxJu7m+XeqqJFxcXjJDT/RFTUMRY0YRTW3vBQ59oXj
W4ovb/xNW4o1b2xNpyS25cQlEU0irnlSvJIDjC/uX/CXCIfDiBglxATICCKRMNua+8wt3x9COGQW
dmxIZcXYqkb4f5W2dH8K/6wonLRZ92sRuL1NtXjg0ZUYGA17BhG5dHYPHvrKhy6ftBPt5bjv4VXo
GCiy96LZtFXFUfz7Pfsxv24A0Zjij4H7gZj7TUkw/jhp1xXUV46grMiufx8eDeF3n7gY75+qdceX
ZSfT8Q9/7UNcOsebZG49Uo9/efECHGsrs2t1FZ7SYNG0AfztXR9j9dwuhNVg4QotMmYnbbCldNDM
bUxjW/Z2HaUyyrf/vOkGHGybLmedbBD8ukR+MfpMQgKZ2fQPcrJGgnY2NVDpsGYF8MefA+Y3pj/2
33/JBTDKZZTsvoiokvats5ebFJKgRsKE1znjBcrjM6chkTtu6Vz+YqcXM5FhImlEJDX5lpaQCIz6
aq4JoWeMQBosImz0fLnM1PIYNRX8PirZK3hmPdfc0D3QXGEJ8hISEgFpmiB7Jv7WzPRSlmtWzNBw
6FbRRvnfWmzzBz9deD2dFnbSOmcGbpu8n96Vq3DaUNPtmjUzqqQV/MLab1hLKjyqo25pyOhcw+FP
iUfZNNqJ7VfMCCKWiSTPAxfCDzbPxYAW9myzsKrjG+tPoZx8tXQ7c3p821x0DBW5VZsw+hsDw2F8
95fLxk6B9QA8mh0XG1WxuLEPD244jXWLE57ZxaEYfm/jaez6cTVixEYdprQDjNQ9smUe/v2L+xkZ
dJOutQs72fU6cZ6R1J6BcMK3TefaOiJzr+yfjnk1A5hR5V+q1/UkyxrxgCe6/RnQdHvSc12aCmQT
9PJvac+7adX/wUnGgnhfpB3MJxgJggXtHmnQJCQksoPzXbzsO1rY90ELTVQkJCRywN28uJzjs1dg
yDhf0J3CuiDIKh4kLv4dCleAtedgE/NxqaZvm+bIz6UkiqniSuzXDA0jN5FU7SaRJnF77eA0bDtW
x/3eHO1N2qMbLmzDtUvPu0TH907U4qV90+052RzEalRTGMEpcZEq2+hQkMiK7jjG4p5eed88rycc
23mqDkeersC/fHYf1i5KhNK7an4H7rykDb/ZO4ObdIrEjZ275Ug9Xj/UgJuWtXgQ2Bg+saoZu09X
4cBgJWLmuVRHxYxE+eLeBly5oAMby0ZQHI6lJmmufhdWOpxjwMrX5xgfohmlJG2TdD7NMBqhhISE
hISEhES2SRu8o0c6POAU0QROt0s1ChDQdTlvW093RI80CpG1OIGz9msG9bIRN1P1liBuMP3WNNNE
NOHnRmaNj22bhygjVy5fNiOIyCgeWH8KIcVhZhhV8fMdszAQC3kHgBHvJpaEXOm+x5E/OP3UKHn2
SBF+9t5srJ7bjZIIZ3PhUAxfu+YUth+txfn+Ik7chB+kgCoPbZ2Dy+d1oLbMnaRmRWMPbltxDq29
xWgzw/xbLnDUhp0DYTy7uxFLp/dgQf2AL+HZaRaZGPL2/uZHmGTdSd4FuicxKefTYMRNNpuEhISE
hIREhrJGKp82L1kjHDcNU2Fq10zhVXeTOVvCYVOQ1tPL9vnXaMJ96JpA2jQr8XYiAbdlbpowkeSm
kYYeTaFjuEZNV5W4iaThw6fw3/nNnlnY11KZ0DiJjcTK76xqwkUzukzTy8QB3QMRwxRQ05KQMCXJ
aFACSKEexya1kkxiOmmYLJ6rRHd/GMVVI/H9S6f14FOrmvHw9vmJyyuJc/Y3V7G2mYmvXHXC80Zu
vagV7xyrQddALaKjqque7x2rxbvHpqG+rBnlRSO+qbp1HVuwETHpuu7sf2ErtSuStSF/oxFKSEhI
SEhI5K+MoXswNN1D04akedoc+cS8kiMno33ch8txsKIUxBJ0QoumCtoWLf5Zs2laHJq2uDbOMpVS
zM9C8BVWOgeL8Ysds7yX5dkhc2uGcO/Vp+JfiprN0kgU1SUjieZMRs8VD4ruB0nInZKKrHlcm+pX
URxFUThmmpYmcA+7t5f3TcOp7vKEts28BpHRx9+agxsuaMXs2n7XdRur+nHHxS040VmOM+0l9t9m
5w7FVGw+XIsr5rdhYf1wapImknXYCZu9sH7X9LhWzQhMIhSvSJMSk2Q+zdO8XxISEhISEhKTmLSZ
QoiNrFkxNhyRzG3JtdMWG2nT49qkQjMUIsFcU/WEdoX+1mBEDoyxD6qmImRED2R/K4zWKfx44zz2
OUaJ1tQQv39jP1eD6TyVm0mCdbx/fBrOdJQmeJzQTJRI+96rTmJ6xYBntLbSoig2LGnDB2fqDL83
PZaEeOken1N9l4aEeV5f8f7OChZ6/YWtjLiNuO6jvnQQX1t/Ev/9+Yu435x4OmvCc33FeHT7fPzN
Hd4RG6678By2H61DR990DFgpAATSd+RcBU6z9p1VPYBISPMk5k7B3J7qwYwaGY8eyfdprK1jGidw
RtGtrRTUJzNpC5rjSI4FCQkJCQkJibGTNsStHJ3pxezJtVPK7rrdv03xWzfv5NL5I6AJ/mq6mvBn
01VB42IWxpY0xjiImGmMjWkq900zQvsbLIVC/5NQz1MAaFBgBfw/3FbOCJcCfdRRAUZ2ZlUOYsPi
Npd2SsRnLztlJJr+zd45GA6HXB3l1JJ6DRBXN3ho/JJ+r6QWciPsbu9Y0YTPXUEZHDVPIfaWZU14
ce9M7KAUAB7E87d7G3Eru8bl89yhBMvCw1i/5Dw+PFuDgZFS2z3Rx47+IsPvbXgUnuH/3fnXdDtp
A+JaU01LhP23NK6a4OumCZpVCTn3Sp82CQkJCQkJiQy4m40vefC4pLJGwjzSXD7WBSNKRWB+ca2a
KLnqSaR5RcnvRiMBnHzRGEnj5IwRsxiRMvZZiRnEzNqvx/crRsJo0sLYjSBhmFiCkQa6hmqq2qhp
ugcVe1MImqua0hFUlwxxFWgSlIZH8d1bDmDNovM41FpjnqsnqLSDmCnWP5puo91WImsjgIp5tpkG
PJ6DTbGuq5upCgAhAbZ5l+bNGASHtc/Sxl5suOC8oeVKxj3LI1F8Zc1x7GuqxgAjtoojouVgLIQn
3l2IFTM7jXQBTjSW96NEjbmIJF0nxvpvZFQ1+sSrHZ2J0TlBcxI4wVRWc5hExmKJbUyaR07qiTQg
C5OaNgkJCQkJCYkgbE13CBy6ZbqD5D5tsGnadFE3B5/mkeYPOH3aAhG2IInBsi+gGam4SKuiqnHB
XTN82VTTLE4ztGfcLE4TNG3snjXN1LQlrqkaOcm4xk0xTSRrSqO82Ty0Wd1DEXT2hxkxG05b32sX
txglX6GlyXG9ZkELrlvSipcOzuRaR7E9GOHafrQeWz6ejhuXnnWd2zkYwUhMsY8/808ii0UqTz6o
JamELj4YXmQNiWAjFlkj00gygU2YRSY0bVK9IiFVbRISEhISEhJBSZvnZw/VWiJ3sMOnzQhaaGrS
FIc8bQa758U8JiE3mxobY7+lt0lAEc0pTUFb8bTFG3/iFte0KUoiyASRMkurpsY4SbO0cKOJ4I9G
CVvZD4RGJV84VTXaQlG5geSC2h6u9fIIznK2uww7Ttbh7pVTI4vlfVcdwTZGznq0IntOONYuUdbu
j21fiCvmnkNZJIqQaepIZqm7Tlejezhiyw9njC/GkevKhlBfPoCQMpqctOm6Y5sga4j7spmETfxs
aNiIvMUQG+WaNuN7OfVM+vnUz7EaIMeChISEhISEhE/Zwe3j5BVj0JaiyvF92ArnbzN99CqCCSWs
FAHxLNuWJA0h1KGYQVpkkk5t3PgTNx3FTCgfMcwgEyaSikG2LK0aCetkDhgPLGKZRdLfMaveVk42
xQj5r5smhIquGDnaVjSeZ6RiGOf7SxKmVCb5oEuQWeBlc85hZlXfpB+si+vb8ZnVJ/DYu0vjJpnC
6gA+aq3G07vn4dZlpzCjcsDYve34LGw/PgM9g0WuMUakjaJOzqjsY6Qt6qnts6cZFImaW+NG/R4z
CZulaeNbRtqIuJOprDSPnLyTqQz5LyEhISEhIZFFtiEKGLptH0wDx4S1YzwQifl9IoqkGD3SJGJx
LZruSA5gFYOo6QKBs8L46dzBSBGIXBISFg9QMsHEbUQvRQmGEyZx5KvG/lENTRsT0o0okFzTFosh
roUUtW3GPYS4ho2bWCo8EqXKCRudX1/Sg8vnteHlA3NddSDTyhOdlfjb5y7DH127D8sbO1wJticb
7rmctG0zcPh8tSsoCbXp07vmYXZ1DyKhEXxwqoERvAtxor0iQcisIaJyondhQycqIoMGsUr1vNiI
WzyRuhA90owUGYubR+oJ4mb4s8UwErWiS8ppaBJPrZK0SUhISEhISGSZsOl2IcIka7p4jOjTBti8
1wTSpts0aIqqO4gbYKd9Dk2bWMG4KaBJ4pCCmHkSt/FBVK9AMTrtvmpGGgAS2BUj5D8J7CojUVyz
ZkaEZH/ESJMWU+IkIBSyfOIUI/m20TSKahBBMpe85cITeO3gHIxaJpKi1pKRgL0tdfjTX63FuoXn
sKC+2yB7YkhQzSK6JlGmz5pBspV4zBGLVDpbOqabmj/FTISumInCSSOoKkgQdn5N1emP6LgofW1k
O1Ac3wvaVU3nW9V5KfZ3USiGkvAoPAORsuu29JbhsbeX4aniRfiYEbteMosU7X2VxLVmVfXjyrkt
qCwaMkwXvYVr3fUIOXOzWeH+YzHLRNIkbYamLWaaSGroHSlBNKa6rikxSaZXXYyVm34ylqRNQkJC
QkJCwhd3c/9h91ezrME03Rb636Vpiwu3AjFT4lEkYV9S1nU3FfT0olMEYmbtUuJcU7F9P/4+bYNa
LcrUk1B102+NMQwS0BXTBDKmcqJDrlWKpWkzzSLp+1FDaFM5YWP/hVSuQ9QMvzbuF6eaEShXTGvC
dRecxmtH59GJ7txn7Df6oxG8emQ2cHQ2dOE7JYlwqTiaF6K5oUDgFLFHTNLmcDOMK03pmloy7qwk
SJuwKGD7LVvddHudRHNIxWxTI6ed9XPmOZSL7nBbFQ9u40HW4tdi2+uXnMbc6k72R5SRU6QlbTaT
SAhmkVoipL8matgsnzaNk7f+kQhGNVUK6pOYtAUmeXIsSEhISEhISKQgbboo0Do4lC5wL1ueNsGF
x6Vpi4fzFyR6RTw5bhopfLa2guObbgYs4WHprXXrNATNS/LJMZFrH25EXbFukCtDWxUztW1WWP/R
mGG9p5raLLFQfUOUz80wiWTETQ2xzxr3f1NVbmap8qAmnOzFcO/qD3GgtQ5neysSNpYicaPPpoWf
4tyfTPnl0FYpHjFeRJIGR/MrcBB+L5LopSyFkFpAPMaje+2BaYSdauIaznvQTSJrq5yooGXnXj77
HK5fdAKVkX7ERp3aNN1zeNk1bIhHjRTzs1nJ1S1zyVEaB+zzaCyG831VGGLkWgrqEtI8UkJCQkJC
QiIpj3GLzq7jdJtSzBnyP6FcsPu0mRey5WFTxFTd1t+Oz2ZSYsUMdW/P/wWH2sWUvG12cWkyN+eQ
uO3vvhKLpz1vmhUq3CwypiQCjRh2gErCPJL+GRWEf9KuWYJbCIbGjkwiVdPUUNW4KaVimiY2lrfj
W+vew/96cx06hkoSxM2zV2FXg3mRKD3JqFCQ3D1QSXKMnr47XAm39TR18FNfYfwmPcRJAllbL6zr
wudW7jXaVPRlc5lCOv3Z4MzLZjePtFI7xM0kTbJmkDZG3g63NxomklJOn5zYcwT4q+/rKClKf+yp
VqB/WEb8l5CQkJCQkIQtNWXTvawTxeAkekLxJcaMFAPoJUhbsmxuhlZNS/i4URQGUdtGdm4qt2Mz
8rWRdk2xwv+LpA92okaVUHyEHcmhRNTa34BoQz27hXZO2mImeVO41s3iVKNCXXTVbESzPWgbIm2b
EXVSjWvaVNXyf4NA3BSsnHYMf7Y+iu+/swZn+6sNU0BDo6Q4mikZKVJ8tIvuJkuuPHF6wPb2Imyp
yJqf4511VFL8rqDmvKihDfet3oll01qMLOdRLdVz5Eys7VPb5gxEwrZDUQUnuhoxMFIsfdomKbp6
eZGQkJCQkJCQCMDcUlI2b8Jm+bNZVo2abb9uRL7T4ts4aYPA5BQh5KRF0gxtmkDYdIPI0QVUIVW3
o9APKGrCRDIJceN/KWkaITcatzMjl2NB+CUzCAdxUMWIGqkIwS4MBduo1YgmQQ1xs0jaUiJtImlG
UUzCpvDk2jxnmxLX5hFWTDuBv7muG7/YtxrvnF6AYS3CIyOKys10t5xMmxZEe+Zh2uj5G8mukez7
IORNSVNHlX9H6wKVRcNYN/847r5wL2ZWdBljM+ojSZZoGhlf79DFqJH2oCSiaWRMCP1/rGsROocq
jSA1EhISEhISEhISkqilJGuiIOokbKKSLM69NJO8aXHXNLd5pEPTplgMTxWCkkAkcpqxJT8ug8wJ
GjfjhwyyoybYo6VVS+IfpaeRg3MlJm9uvg33zdvKbnPQEMzjVbL8qmJ8G7IE/pAp2OshI/BIyIi2
qMW1a/HP5CdnaN00M8KjEieBhPqSNnzzildw7fwFePv0Qhxom4Wm7mpoISX++4qfDAg+FT5xP7Ek
7e9JwkQ/NfHQVNo+xeOayX4rGdkUxndEiTGC1oPlDc1YM/cYltQ3ozgUZSQ6wCPllVgbuou0uUwk
49EjGTmM6XjrzEqcH6iSWjYJCQkJCQkJiSlP2fR0AqhDAPYgbNCsZGxxrVs8CImlabO0bRZps0vP
pmZNsTM+RTHVc4rg12bzdTMD01s+bBYRNM5T7cTNGbFC94q2ofhvmAwxHIvg2PB1WFL0vBHD3ohq
SK5sMbvQT2TNqocR4l/n2jZNt0wiE1o21TSTjGvYrM/x21L+f/buJTauq47j+P/c64kdJ6nzImlV
ER6FUCG6atW00ECbBoIQSEhIXSDUBQvKggWPsmHVSiwAIdFdkSqgAglQVFWqRBVBmzbkIUQAQR+L
qqRKWprYsRO7Tho7Y8+cw73nnHvvuY8Zj/NoHPh+pOTOy3NnRrE0v/z/53/y4/YNx+RjG4/Jmfkx
mXx3LAkFY3YT6cWOq9SV2hv9Z6Z86Ai3BciHUPrtAPIc5Pea6+piHaEyxWeaP4dpWOoWpOzyOsXm
Als+HTLc66801SZ4ZSZ87cb/bfK03GoZWTtyUTaPnpcb18zKhpHzSUh2CXpxWYGtHtzKLZLSsK4t
G0biL6dVttlbZCJtp9WRsIoJAAAAvYNaOVcV9/UIbH4PsCxzuXZIHVTjgtCWXJ9TokdNVkXL2hsl
HP1fPKESXa64+cpSMRc/mFqYthT64CZ999LuUW6pxYMr69Cp+2XbB/8mw3rSBwhdfMZxNSC7aZM6
jiXWxlbSbECzlTbtg5sOQlsR3kqBrVJ5GxualrH10/LR9fx7b5KuN9Td5fzOmHpwCxd1mt57tblK
W7HZ9lxnRA68dYdMXVjv9soAAADA/3tCG+x+U57zYcLAVglqpuextE9bNJM8zWi+R5vyD1BB4vOp
L09/aVDLbhO/kVk2LSLYO84V3lxwM8bdr0qbfTXs3tz4xq9OcEvXlD078ZB8aetPk5c4XzqPsR9m
ui4vXcMW28/EbUht7L5uUXX4iL+crWHLLvcLbKrh/SrFuqnl/ceG6Xt7GNxKbZJ+b7ZSiNPFfm2L
Wsmf3vy0nJi9WTpaCVU2AAAAAtsSX0wrjwuGjlQqbSbMVhIci9Cmk+NiEdpUPG3M4s0iupT+8mpa
+kNpqSNdt5Yf3Vo2E3VtEDHajcY3wSCPfJ8w+33XB7q0Jc8Us+zLAUX1GZ159YLMxLub5c9DX5dd
mx5378tvEhYFi+2yL/bpbe6YBDXtQpwd89/1bZLBOjY3rCVsiZRKcGt+T4S2KxPaSsFNKgGuUmkL
q2xZm+TR05+SVya3y9xCS4qN4wAAAEBo63+/6TGEJFuKlnc29qmyJV9IO8l303NFaJP4pOj2bcX4
fjfmP1/f5oOaDWbZ0S2YEjsj3y8GM74d0GUyN4lSsm0A7F5uqhTe3BsKRwiaPgHm6lY5Xp/5SHKK
h+Qzm5+Ulp5zIS1SRfgMQpvOWyOjIqiJKqptfnpk1h5ZCmyVitsgWZQQN3hIa/qdMtIwjKSyrk37
8rNdz5YE8n9M3i0H375TZtujBDYAAAAM+H20UmmrVNlMvgwtCGhS6W60g0i66X1tZfRUHtqSsHXO
ZOvXRPv2SF20R0p4TBcXZe2OvsrWa2h/nsNMPmhChZtuVWe+N4QTY967wPJaEtwm5x6WL3/gCRk1
48nbjcT1m2Zf7NNNs9OgZvxm2sZuE5Dty1aENl0aRNIY1mSwvcMJbJcX3EzP4NY8iKTdXS37T+6W
lyY/LvOdYQIbAAAA+oSzpi+f/aZGFqEtr6hJ1+Yq8X+Mya93krsv5KFNqda/ki+tD7gvqNnea11X
RYt8cLFVNuWCTOTvU5KNKMxDmMmWpeUVtuwGdzR5xS0MME2h7dqElbPz6+Q3//6W3P/+/fLh4cMS
mwX7PtLwGNm1eWnrXBbUdBDUsjVtqlxhk+aK26ChTAmhrfnXZOnQ1jiQJKuwSfm6NrG8PXeL7H9r
p/zn/E3StYG9ywcNAACA5YW3ILiZSmtk3hIZVNeMlAObPWp7vJBkkON5aDNm+JfJIx5NAkmrmBCp
XNUtq7Cp4kmVKapr9uhHuCub2GK/oXYs5Qpbbah8tu22VCtu1zqoLHRi2Xf8c7J21T2yZ9s+uan1
ssR6wW1T5zfNtoVIuyl3ObSllbfqiP+mCZI9QxqVtUv7dVmi8lZtjSwCWyST7W1y6NTdcmxmmyx0
W/7fKIENAAAAg8Q20zO0Na5nq7VHVgJbftRTEg0fkDApve+OJ/9u9MXbVRK6RA2JPUbpcchdj/wx
vZ7fHhfHyB3TSp17jsjdnlXW8qPyG2/Xw1pRhlp5weXWjcfltk0vyfrWaVkdTcuQzBdVtfQVR8E6
tmBCZK09csnKGq7Q/3E0hjZtWnKhu0FmFzbKiXPb5OWp7TJzcZ0N3wAAAMBlfxNtGEJielbauqVq
mzGdrNK2kHxz/cOpF+/5Sva0dnNtNbT6adOeu91tkO03yvZPqGyfpSrWr5l63cxVniqVtvQF2oAW
ub3d7CjJyK+Xa6iumZUb3F47u83+wf8i1q0BAADgygQ206PKVhrzn69r69bWtRmdBjc9bSQ6Gj71
kHvOkV8kdz6ShKaW+0El2R5srvUxa4lULqBFUgluRYJMA5u7HLlKW7rXWb6PW+QDmioFNJMFtVJw
64WqCAAAAIBrEMxqd5vKY8uTI+tDSIwLZ5JPiayvaTN6XFT8bGMC2rLj9z/RC9Pfd22PseTHyLdL
9miJLD02u2zbIf0fN1ux2IDb35afvjZZkVAGAAAA4PoJdaYU1oIAV9ujrTqERFcD2ztJPvrV+IF7
vxueZShPbzdseFTOzHwjeaKxfBqkbYfsBuND6i2RdkqkP9r92dL2Sr++TYxbw2Z8lU18lU3lYc1X
17JqmyK4AQAAALh+Als5qJVvtxW1SrUtXNNWGUaSXNWvqOGRH1fPlIe208/tubBlx2+f0AszD4d7
rxVtkMqubytuM379Wtgamb6I2L4I5Sttxq9lywJcFgalaXqkyS4R2gAAAACs5Mhm6gFu2Rtrhy2S
ZlJFQ/vGn995umdos2Hphk2PqOn5zxvd/oTJw5PKA1s4sD8MbCpLjbY9UttWSRNU2oohJFmLZFBx
sycuB7ji7RPeAAAAAKysuNZ43YStkvVBJPUWybDSptvJIw6pdRt+1nTGWirasuOZrXpx/NXkBzen
Qau0Vi0b5Z+1P+Zr2aLS/eLXtKlwDVu2vk0Vm3HX2yFru0/zbwIAAADACspsPUJbQ5XN1IKbbtqv
LU1vR2T16IMTz9/75kChLbX1rqfv7LTHX0wi1mg5uEWVwBY13B75NsjyHm2lYSThmraGl8Em0wAA
AABWdnbrE96a2iNLEyTDzbXNqypa883xQ7uO9DpXz3R04117H1xsTz1eDm5+37VqdU3C8BZW1iIf
wJoDW709csmXBQAAAAArIbZVU5y/dan2yGJ9W3LpDRWP/mDi4O69/c7UNx1t/eRT93UvntlbtEpm
Aa0a2Kr3RUFlrRzYmtsje70cwhsAAACA6yC0Ddge6adKdo1R/4zjtd8ZP7z78FJnWjIVpWvcTGfq
oNHt7UX1LMoradXA1tQamVfVwsBmz77EmjahVRIAAADACotrPVsjRWpVNh/kjA9sSXBri8QvRPHY
t8cP73p9kPMNlIi2fvaPa/Ts2cf04jtfTX5gtKmy5qpo5cCmGtew1QeQ9G6TvKSXCwAAAABXKqIt
leAqjw4rayLlSptMSjTyczGrHjv9lz0zg76CZaWgrTuf+ZBpn/+RXjz3QBHMytMhi6mR/Vojg1OX
gpoirAEAAAC4jsJb09q2IrD5qtysxMNPRSPrfjjxwu4Tyz3zJaWhdLqk0XPf0535XSKdzQMNHOk7
6r//y6FFEgAAAMA1jWxmwNBWtER2JIpPSjT8XKyGfz1+5AuHLvXcl52GbIAzi18zev6+5OmM6bZv
TTJWq3db5FItkeq9eukAAAAAMEAQG+Rx6oKKWm+kR1FDf9Xxqt9NHf7iUT5LAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAFfIfwUYAA5mpSOKNj+qAAAAAElFTkSuQmCC" transform="matrix(0.145 0 0 0.145 0 0)">
</image>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 40 KiB

789
assets/thirdparty/online.svg vendored Normal file
View File

@@ -0,0 +1,789 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 24.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="190" height="20">
<style type="text/css">
.st0{clip-path:url(#SVGID_2_);}
</style>
<g>
<g>
<g>
<defs>
<rect id="SVGID_1_" width="188.5" height="21.4"/>
</defs>
<clipPath id="SVGID_2_">
<use xlink:href="#SVGID_1_" style="overflow:visible;"/>
</clipPath>
<g class="st0">
<image style="overflow:visible;enable-background:new ;" width="1315" height="153" xlink:href="
GXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAqfhJREFUeNrsfQeYHNWV9akOk0cz
GuWcc0BCEkgiJ5PB2IATDusMZp12P8dde413ba/9O9vrgHHCEZywMQaTswQCJIRASEI5jyanzvXX
qdc1U93TXVU93T3To7lHFNXdU1396uV33rn3aigANn6kqkZLxMfDp/l80Ko16H6fphkvUePTAB4a
D2Q+E8lT73sLGjQIBAKBQCAQCAQCgUAgEAgEgsJAN/6lvNcR1zT0JIyz8aeo5vN1G1fENJ/eMu9L
3R2F/O0BM31P3VxRZyR0knHU+3zaUr+mn2ckOujTtNk+6NXGOWjcfU4KGZmJlLQSomVOkKYJGSkQ
CAQCgUAgEAgEAoFAIBAUBHoGMhIIGadDuo4eQGvXNG2/cU2n8ZdnkcBmaDgBv9ZYCGIyZ6bv8RvL
R8cSmO33aet8Gi43Plrh82GiX9NM0tHvU+Rj+qH1U0hqKQnISkbmnWKBQCAQCAQCgUAgEAgEAoFg
hEJ3/0hP/k9Pf6/rMeN0GBqeMj55GAlsND7dP/eroZaBJscztffo+6pqY0hQ6XgBNP39GrT5JB55
BIwP/SQb+d5+tpOQ4Fnrb56dbqbtkirhIgUCgUAgEAgEAoFAIBAIBALv0F3+0I+EtN4nX/Oc0PWw
8fIl44NfGuf7NU0/MPt/Q525psUTt/fA+8pnJRK+C30+/Ubj7cqAnYRMvvZrfedUMlKDD1lMtLU+
8lHLNVECgUAgEAgEAoFAIBAIBAKBIC/YiUrdTk6mEJEpr7uMV08bL38BaI/O+d/uA7n8niPvd98N
8GvllQt1JD6Z0LW3B0wC0jq0JCGZSkb2mWprfSbaSPMbCRsRiUxBawQCgUAgEAgEAoFAIBAIBAJB
sdHPZDtNLWkSkckjgT5y0jiajLe/hqZ/J1Ae3Dv9C+1xL7+Xlfd77F9rgh3t0XV+v+8LCV0/t5eE
9NvISE2971VF9ioitcz+IuGRjBQ2UiAQCAQCgUAgEAgEAoFAICgu9DQyMpOJNvrISL5O9JGRfN+u
Q79Hh/bNOOJb5n0lHHb7yYy0HxWR8WDl+fGEfqumYUbQroj0KyKyz1TbdiYJaakj+/mLTCMitTQ/
kbYUCRcpEAgEAoFAIBAIBAKBQCAQFBd67/9s72EPYGMjI9GnjrQTkokEwgld32h8/vmyyuDjbgrJ
jLzf3e8sXxPXtTuNP84I+u2m2UDQr/W+TiUj+4LY9IukjcxkZKYEiCpSIBAIBAKBQCAQCAQCgUAg
GBw4EZJ6NkLSdsQVIRk1Xj+pafiYP9L94vRvmpxlRgTSP7jnneWzorr2bePGM0zfj+hTOlpBafwZ
Dot49CP5neSRkYiEXRWpXgkJKRAIBAKBQCAQCAQCgUAgEAwBtPRI2nqfibamXiS0PkLS/Ery8+Tr
oHFak0jon4n5Kz4NhF5z+Kk+3PeOivqQrn8vlsDbLAVkMGmaHUyqH9OVkilRtbUMqkgtExmppZhj
a/1SIhAIBAKBQCAQCAQCgUAgEAgGE+nBaxT5qPe+TmRQR8YTfa9jCTQnEvovfbp+y6yvh1oy/UaK
MjKq61eHY3gbyUVT0YgkqQgbwYj091qKEjLlbzYVpDq0vtc6Uv1D6lLgAoFAIBAIBAKBQCAQCAQC
wVDBEjuaZ916ryVJSt3k/SzFpAX7a7+GBmja1bqub9r/Mfw2k7l2Lxl5zzsqx4biiY9rGdSNvgwR
st0Oyy+kaaqdVEPa1ZHWA4oiUiAQCAQCgUAgEAgEAoFAICgN9BKRmo2YRJKUBBWQiqW0iEmfjdsz
/w5MNq59awwVjwKhg+n37yUjI3H9XZE4ltMcu1e9aAWfQSZFZJ8qMuV66zu69ZmWpo5MM88WRaRA
IBAIBAKBQCAQCAQCgUBQMkhXSJpInn0mKambkkefdTH6lJQ+DeW6pq1IaNp1+z+Gb6erI00ykqrI
jnD84yZxmFRAWqShpYrU0hSPms0fZErUbPSpITMGrrH7ihRVpEAgEAgEAoFAIBAIBAKBQFB66I1U
g1SJpHkmf9jnYNJSSJo+JjUz2M14aPrlUZT/Dggfsd/WJCNjCf3auK5NCthJSPRFw+41t4ZSPKpD
M/0+ar7U76S+Tl6jod/ZfBZRRQoEAoFAIBAIBAKBQCAQCASlC5sy0uIjTamjyQ3qvTygRUgm1HUB
469zEvC9zvj4F/bbmWRkOKZf20+9aFc1AlmVkVm/Z5lnOygjLQwHhWQ0OBrxQAV0X7lxGNmm+ZHw
lyeD8GjJ50g9pz6jyECHClo8DC0RM1pFDL5YyHgfgj/cZr4XCAQCgUAgEAgEAoFAIBD0wTLL7mWy
7IpIoJeURFrgap/ed1nyGKNpOGP/x3C73VQ7cPc7yxvau7GqV7UI29l+ZPrM/jf792EjItMVkdYD
2bk5vTTj2ESC9eYR81eidfQqhKsnI14xHonyWiPnKhGpHA+/3wefZhw+dZhm7smzdajndScsBYVs
OH2yW393IwKxTiDahUDXIfi7jqKyaSsCPY3whZuM8wnJMIFAIBAIBAKBQCAQCAQjHnbO0Xxv5+yS
ZGMvj8ezpY60EZiWUjKhocb436IoKsYBoWPWbQKJOC5J6KgPaBkUjsigcLQ+0/oHuknn14arr8hY
oAbdZeNwvGEdWuuWo7NyOnyBIAKBAPx+f+85aBw+nwa/z5+ViHQiJNNfCwrQaHS9//vaiYgZZ76O
jFlqntuMo7xjLyqObUTNgQcQ6DoMf7hFMlAgEAgEAoFAIBAIBAKBIAlNsxGSab4jdds1dqFh71k3
/zQxAd/Zxts7rXsGYjGc03uhPTpOBpWkdZ35mW4jGm2qRztJmSlSdnoCSw1dFZPRWLcSh8acZ7ye
iIA/gEBAEZCpZKSvl4T0+93IyOyKSCEjC4uMZGTybDpRtb2P1c9BR91sdE29ADV7/oaagw+hrGMf
kBDzbYFAIBAIBAKBQCAQCAQjD+ksVbaI2rDxhbqe2bI6eb86Dfpi+z0DcR2z+hSLWkYVY2/AGdtn
1vt+qknYVX/Z/USWGnQtgPbyKdgx+Xocr1qkyEeTaKT5tb/XDJvEozqS721/609Iop86Era8FhSx
PDOQktZhvWcZ8JyonoC2xe9GaMJpaHjphyhvesn0MykQCAQCgUAgEAgEAoFAIFBIV0f2+ZbkPz2j
a0fj4wrjusn2+wQSOsbAyR8kbEpI2GzCNZv60e4HMo0BdX2QEuDkdM2PpuqF2Dr+enRWTO4lIdXh
Tyoj+w6liuxTRGZSRtJ8266GFNPsIShXGyGZTkTyMIoKiUTCLKtEQkNk7FI0rv40Grb+ENVHnoQW
65FMFAgEAoFAIBAIBAKBQDDioKdbO+v9X1t8oZ7JRLvvddC4vs5+K5KRdXZurF/0a2SIrI005SRs
akn7vdLfpyksSwVNVfOwacLbEfLXIahpJtGolI59Ksg+RaTf/DuVk3YikoRWP2Vk8qH7kZHpGSUo
SqvRM7y3KySVOtL4LKH31slE7VQcX/1pjN/0ZdQcekRMtgUCgUAgEAgEAoFAIBCMWPQKIe1KyAw+
I+1+JTU95fsB41Rtv2cgkTDDbGc0pU4nFtVnWlZS0TLRduLZSi2ITUf5JDw/9k3o1moR8GlJUlFL
BqaxDp/t0JLKSC1ppq31EpFKDemzqSJtptpIZWuFiiwudKuCWWpI21v7YZQcEmZ0eRXribJiBCtx
YtnNCHQfQ0XTVslMgUAgEAgEAoFAIBAIBCMKdlrFIiTNz5EqkuwjIm0MpS2ytoGApmk19nsH4gnU
B/3oC1pjC1yDtMNult1rkm2ZbOsOD4C+60sJUX81No+9Hq2+scwZRShqtiP5PpWMNA6t73Ofr++s
kZTUfBmjaPcRtUJDDiYsfaT9bP+n+ew+DRLGBT7jPx3x6nFoWn4zJj71afhDzZKRAoFAIBAIBAKB
QCAQCEYeUlWOKYFset/bjwzfS+cDAynBaDLwZOmKyXQT7WwYDpzb/trTcMA30zTNNtWNlq9HX+r7
lEPrr5702dSRvUQk+hOSfTk4PPOrpNuG7lwPrb/3tg+tTx1pdz6g6z51hfGHcMNitM25Bg0v/4y2
3JLJAoFAIBAIBAKBQCAQCAQOcPAd2YtACnOpp15oqvns0sp0VrM3vrftznbG1E5k6mmpGWKVZChQ
h6015/WLet2PfHQ57N+xKyLtZKSmISXrhXgsQmXPkKd9RGOqbwPYqi0pRpZdeuB5XVdl2jbnjajd
ex+CnQclkwUCgUAgEAgEAoFAIBCMTKRxKuZHNktqOzXoLMdTTiQLCsv/ZKljT/2Z6EQVgj4kyUT0
Ixf7EY5af/KR3+slMjVbsB8tPaiPbssjYSMHvaXY6qdSRKoy8BnXJFKIY90sW4uMjJXXonXuGzFu
87clOwUCgUAgEAgEAoFAIBAIbEgXf/UTPWYQIwb6XezxSPcZWWr+IJ2ga37sKj8lRRHpdPiyvoZN
WZnpXipj08lH4SKHrOStEkh57bMKJXnoveXrM8PbdE47D2O3/hharEeyUCAQCAQCgUAgEAgEAsHI
g57hfTrp6NVnJP+X7hPSK9KjbQ8Xjq2zbALa9FGKWLT/s5lY+7S+o8/sGr2EZMrnGf/Zooun5Ywm
sbRLoAWlVt5+Jva2+hAvH41QwyJUHn9esk4gEAgEAoFAIBAIBAKBIA29ptlp7h6tQNl2BOyRsvv5
d0yLrG2Ppp3J1+RwwcGaU5DQNPihpZpVA1lUjtbftbS/wfUA+ishRRmZP3p6Quju6UEkEkEsFjOr
YCAQQFkwiMrKClRXVXm/me5ejl0T16PymJCRAoFAIBAIBAKBQCAQCEYgPCgjU4hIZOAZkwg48WIp
ykd71O1hnn9NZdNSiUfYiEibqtEe1qTv71kO3f53PRn8J2miraeZauu6VGIzG3SEIxGTWAyFw/D7
fCaRWFFejmAw2O/6RCKBE03NON54Att37MKuPXvR3NKCjo5OJIx71dZUY3R9PWZNn4alixdh7JjR
GD9+HAJ+v2Mr0q2w2skjU/mGG+ZLgQkEAoFAIBAIBAKBQCAQuCGTkNGGVJ+RybNdDZnR/nuYKyO7
tep+n6WqHbXMPiBt16V+R8sYlMZ+nf080hGPx9HY1IQjR49j12u7ceDQERw9dgwVFRWYMmkSpk6Z
hLmzZ2H8uDEmuUg0t7Ti1V2v4R/3PYgHH30Mr+3eg1A4Yn7HH1DVOGHc1yQ1jXyePWsmzlx3Gq68
7BIsXjDPuNdYM/91Xc9c9rCXo96vbGmqDeGQBQKBQCAQCAQCgUAgEIxEePUZqbt/NzAS868LVX2E
I1IJSMJ+zmx6raecNVivVTTm/sFr1LmruwvRaAxVlZUoKwue1HlMpWI8FjPPPp8PwSRh2N7egZe2
v4q//eOfeOTxp/DStpeNvPGZSkgqH6PRKCrKy7D2tDU47+wzcOWlrzPNr/9419/xy9/+Hq/t3osJ
Eydi2szZWLxkCaZNn47q6mozf7t7unHo0GG88tJLOH7sKH78s1/hr3+/F2++7hrc8KbrMGf2DFN9
qWXQCWsuptrxijrpeAQCgUAgEAgEAoFAIBAI3OCqjHRTPLp9Dgw/ZSTKTIWcqZJLElPWe8Uh6r0E
o57FpFp9rpR2uqbMsjNdG4lGTSUgIzPf//BjOHT4KGbPnIFFC+Zi2tQpJjl2MiEUCqPxxAkcP9Fk
nJtMpWJNVZWpdqSK8f6HHsX3fvRT7Ny9BxMnTsTKVasxdfoMNDSMQTgSxonG49i7ezdeePEl49pH
8PhTG1BTXY07/nQXxo0fj3MvuABXXX01Tj/zbEyYPBm1o+pQlizDCH07tnfhxNHDeP7Zjfjrn/+C
5559Fl/95vew+cVt+OwnPoaVy5YgGAz0lreyzE4z2YbeVz+SSARrRBkpEAgEAoFAIBAIBAKBYGQi
H2VkGkakMjKiBxDMYm5tvVfof42FPvWk1hc1O6mw7OjswvHGRrS1d6ClpRU9oZCpDvyfr30TejyO
8WPHYPacOXjX296MU09Zav7tZMCRo8ewcdPzuO+Bh00y8dDhI+ju7kFtTQ0WLpiLyRMn4m//uBfw
BXDu+efjDW94I9accQamzJiD8rIg4rqO7s5OvPbKVjz28MP4w51/wEOPPmGqJZlf7/yX9+DNb38b
Jk6eatbtqPG/aBwIJyu6z8j/yppqzJo3D3OM48JLL8Vf//AH/PgHP8CDjzxm+pf86hf/E6evXmXk
udbbYjLxzdlM7wUCgUAgEAgEAoFAIBAIBA5wISUDGRWObgpJDcNaGanSqyefIZl4Xe+NqmxXRsKm
ljTNrWELT259rqnvRqNx7D9wEE89swmbntuMAwcPoDwYRNDnQygaxa5du/HFT38cq09diu/fejs+
98Wv4Ntf/SLmzZk97OvZgYOH8N0f/wy//v0f0NUTxtgJ4zFp2kxU11SjtbkZr+7aiyc3bkJtTS3e
9La34aYPfxgzps9AxPhuJG7kXQJmzlbW1mLN2vVYvW49zjznXHz/O99BU1MTPnjzzbji6tcjZlzV
Fc1c5xI6g9wY91K3Qs3oMfiX938A8xcsxBf+83PYuOEp/Mct/4sffvurmDd7Zm+ZW2VrD16TKZiN
KCMFAoFAIBAIBAKBQCAQjEiIz8jCwEntmP53uwLSfq2FSCSKTS9swQ9u+wW2vrQVp5+6EtdefiGW
zZuDmppqMwr0y6/uREVFEGecvgqzp0zCez76H/jOD2/DN798CwIB/7DNx6bmFnz569/FT375a0yY
PAVXXnk1zr74EsybMwcNtbVoP9GIrS9uwcMPPoyFS5bgwx//KKqqjc8zkYoJoMM4+X3AaevPwPQ5
89DZ2YlZc2YjFAdicY/R3I37hiPG9cZ9zjrnHHzl69/AzR98H554egO+9q3v4+tf+rxp/m2VrS4R
zgUCgUAgEAgEAoFAIBAI8kc6SZmG1GjabqxmNl+Rw04ZqdvUkUkFXFLt2U/1mKaMtD6z/y0WjZqq
v89+4cvYu3cvVi5bhFgsht37D2H2tKlYcupyTO+ciOqqCvT0hID2DkwaPw4fePt1+MSXvoU9e/dh
3pxZwyb74omEGYiG5tOaz4ff/fEvuO3232Ds+Am46ROfwjVvfweqa2pA4/NaI4PK58zBqtPX4oo3
XIfKmlEIlgXQFclOKvJzKhx5TcP48Rg3YTxCUVu5eIR1H5Keq09bhU9+9nO4+QPvNf1PXn7Jhbjq
kot6lZGajn6qyP5lLv2JQCAQCAQCgUAgEAgEghGIXJWRevbv+kZi/tmjYlvv0yNku9us973esXM3
PnvLl/Hitm1oGDMGK09bh9POPBs7DjTiQ//xJTz2yJMmmVVZUY7ysjKYgW+6urBy8QJ0Guef/PI3
6OnpAbJGEyqdg0FpNjyzCT//zR343q0/xw9/+kt870e3wef344YP3IQbbrwRgYoadHQBrZ1As/FY
7WGgOwrUjWmAPxBANOq94vHaUAR5EYE6ic04cOXVV+HqN7wR4XAYP/nFr01/lox+nv6MqZHT08tc
IBAIBAKBQCAQCAQCgUAwUIxcM22vKtC0v2vJf9braCSK/7vtF3jxpW2YO2cOPvOpT+L6696AikAA
73jb2/DO974f3/3J7Tjr1GV45/Wvx8r5cxGPxaCRnCwrMwPa/Oz23+CSC87DeWetK+ksIxH5o5//
Grf/7k4cPHIU5eXlCIdCiEQimL94Cd783g8gEteMz/rIvO64+m4lsy+MXmljQu9v6l5MxKJGGsp9
ePu/vAd3/fEPeOzJp/HyqzuwesVyR/5VqSVTTfQFAoFAIBAIBAKBQCAQCARZ4Gqm7cUU2ylwjYZh
KhpzYR0thVzK9fa/qfPL23fgL3ffgwUL5uOWz/0nrr7yCrR0tCOi+TCmYTSuvPxSfPsb30Braztu
fMebEe3qNs2bg4EA4vE4qirLUV9bi1t/+SuctuoUVFdVlmRuhagmvP13+NLXv4260Q0484KLMHX6
dBw+cBCHDuzD1W++AWMmjUNXV3+SkarEiJFdZcbngaQkkgFryozXFb7Bqz4MfLNy1alYddppuP/e
e/HQY09i9YplcFaD2spexJECgUAgEAgEAoFAIBAIRiIKaKYdGNEZmFQ39p6R9j55XYo6zpa5hw4f
xQ9+djumT5+B/77lc7jyiivw/Kbn8Me/3IXly5fjujdeg3A4hKrKCjNAjR4KmwSk+dO6bn62dsVy
rFq5Aj+748948aVXsG7NqSWVVQy8c/zECby2dz++/YNbTTPrt3/gQ7jhgx9AVc0otLV24vDBPZg2
ewF6Lc3TwPyLJqNca/G+IiBBGdDUARSf66P/yPKKANafebZJRm549nnnxuMWDUogEAgEAoFAIBAI
BAKBQJAKTwFsvLtHzP73YZcrehZfkXZ/ktkz4MChw/j+T36Onbv346tf/h9ceO7Z5l/uvf9BfP1b
38EZ69fh+jddhyNHjqGubhSqKyuRIBuWBIPAVJeX45Z/vxl1o+tx133349nNW7BuzcqSyaVjjSdw
2+2/wwOPPo69+w/gRFMTTl27Dv/ykY+jYlQVIiFg1Jhy1I8fg3hMRbrOBi3D+xgjZxvfqw0oQnIw
RLbGz2HJ0uXm6/0HDiJqJNyv+eApgpMQkgKBQCAQCAQCgUAgEAhGIkQZWagczEUWpyORiKOrqwvt
HR343q2/wLYdu/Gl/74F5565Ht2dnShL6Fi+dAkuPP88rF+3Fprmw/HGE6iqqkRFRQUSsVhfCnTd
DOIya+pkaD4NC2fPwI4du1AqjBfJUhKRX/zat1DfMMY4RmPKjCAuuPwqVNVVobtLBZim0NMXVwSu
36fUh7rHRyD5GOb1RrZUGzUxqKnANnqWawuRM7xPw9hx5utQKITu7m7UVlfDWwAfQUmhzCg3X1oX
ljAqU7RHRS0SCAQCgUAgEAgEJxcCFcZRnra8Nxak0bCxFohK/ggEpQJPPiMz+YL0wssMV47GTLfd
D6Cu3lufW2ya9Tp57N67H09tfA7PbXkRz27eitt+9EOce9YZ6OroQML4e6i7y3y/ZNEi1NePMpm5
puZm1FSUG/1lGcLRaL9kREMhlBl/HzN2LHbsPuCdySsyOju7zYjZfK63vO8DWHf2Wdi/bz/WnnM+
rMfw+dQRi3Rj32t7MKquFuOnTjeDxWR6DF5rz14kq14kkQwwY/y9zA/4k59b9ZKXx5PfKStA/Hef
T+k0E3oC8VjCVhfcDulPhgT+MqNy1BnHaKBqtHpPjJkNlNekXhvqANoPGxXKmIyEjdc9bcZnrcbR
bhR4XPJSMPioGKUOzZ/9GhLoPS1GRycTaNVJG3kVrFRnJ7Cd8xiKcXM4pHG4toeM8zZjrO48rvIy
H9SMN8qtAsg1KN1gtNHqMUbaqoykuUx0YiGgu3l49BckDDh+8zxUiHaruUA8Iu1PIBh284GAmutz
/s91QFmV6r9rJ6gjvZ/uOKbm/Gafzfl/m3qf79gxXMExhX2wtXbKBPaN7CPZVw7WvQTDG16VkZmu
F2XkwHH77/+EO/5yt6kaXLxwAVYsX4ZIKGQSdhZoij150gTEYjHEohE0Nzdj2YyJRk4HHBcjmt+f
YsY91GCE7LraGixZugxvff+HMHPaOHTHdQT1GLojCRjJRbinE3Gjg9/w2Ab86kf/hxlz5+JDn/o0
xk+dYTyLr5e/M31u0t1mImbMsQP91JP8O6NrM9BNT0KZbPttZtskIskZ8h51AUVI6nm0nbaWFrUm
qihHdVWVVOxSBBeqtePVwrF+GjDlFGDaKnVUNngLxX78VeDwi+o4shVoPwK0HlQkpSgnBYOFmeuB
+ecbHU5d9muObgNeuMOYRB+V/CK44Jh/AVA91vm6g88Dh7YMzaR3OKRxuLaHjAucGPDUD4y28vLA
+28uoFa9FRi/wJ3wG+w2ygX3KdcCk5cZr4PO13KxvfGnQPM+lPwu6ejpwJIrVJ4PFQ5tBrbdbYz/
B6T9FZ34qOwjhQSCAa8BjP65st5YBxjr57rJwMTFav4/1ThGT/O2mdV2WLX9I1wHGGuAln1qHdDV
pKyoRgrGz1d9MNdS2cC+kX0k82uw7iUYGfAgYgxktel2U0pqGLbKSN38ZyVft71P/Wc9nPWeBGNl
RQViiYQ6G+/1crU7oCXJEZ7NaNllZdi5YycOHz6EN118lsm+0TQ7K4miK5+Veolk6OjRo3DLZ/4N
YX85xjXUw09VWWcUNbE2+HyV2NvUjIfvvRevbX8J9/z5z2g9cQIbH38EsVAIb7/pQ5g+ezoCldXG
0wSg6WG0t7Zhz/Y9aJgwCbMWzkMi4U8Rqlm5QlIykh6t3VahO43v1PmUenIgOcXlx86dr5qvJ4wb
i7LygJGOeL+yz/RPlJGDNAHh4n7cPGCpMeDNNRat4+b2N8XwNAAvUMeK6yhBNiYjW4AtfwJ2PwE0
7TYqWqeolQTFByfRy9/YfwffjlfvB16515goCxlpYpSx+Dj7I8Dk5c7XPfIN4ATbcrek8WRqD9nA
Prx5v1K5DGhiM1MRflNW5P7dYrdRpm3VDcZi24PfcC6kSXC3HVUqyVIGy3nBRcDss4YuDSS+dz8J
tAgZWTT4g2rzmIQRFcx7N0ieCAawBtCUcp6WT3PPBRZdBkxaoj7LFSQxeSy+TKn1OA6/fA+w/T4l
VqDSfSRYTNVNVfnoNFehaOPgZnUM1r0EwxuijCxEJqab3+qpptsZzHSvf/3l2L5jF17Yug1XX3Ul
xo4dg1BPD4KBABLJe1r5e+REE777gx+jpqIMl55/FuLd3d7UXCVCjviNtF5ywTnm645ws9FhBzDO
mPRWJMKoQQ8eeOIBfO0/PmkSeeOMfFh17pnYtXsv/nrn77B924s468LXYeqceaiorkVb41Fs37oF
Gx57HHMWLMDHPvd5zFu2zJi7VJoqSbtSkhbUNOc2idmkT0o7aNLdETXmPMG+yus1x3jfRDSGDU89
ab5ftWK57cczmGWn1xNBccEdde66Lb0KWHG9UlT4/AW6dwUw43R1kIzcfAew52lFSo5U0w3B0AzY
+V4nGF55JuVauPygKuaV+wZORs44DahqKM2yXHQpMGqix8mMMftZeDGwf5NS+0j9FwwZeZRUsHGT
Ydnr1fztmZ8LGSkYwMKzTKke518IrHyT0d+vcDYHzvXeExaqg+Tklj8AOx5UpORAxxOBQOBtDjDg
aNpe/EfavzsYoZALnjO6h/d9ny9fsgD/9amP4hOf/zIaG09gx569qKosRzQURldXD7o6O9DZ1Y3m
lhY88vjjeNI4PnPze8wgNZGu7hxLrHRQG+8E7KRgIo6lMyfiDZdfDH8ggHPOWItz1q/BM89vwQ9/
9mvs2LUHv731h9A1v/n3SDiEqopyVJSX44kH/omu9ja898Mfw4q1q1FVN9aYV1eZilLF+SUQDbej
s7UZFTV1qKge009BGSJ/GAGqgyrojdfqV2Fcv3P7Hjyz4WmUl5XhvDPXeaz0yc9kUl08cNdzzlnA
eR9XypBCTUAyYfaZwMy1wPZ/Ak/+yJg0b4TRQGXVJJCF+3DMh6EaNodDGk820ISZKreB5uWkZbmb
hw9GGy2vVeMffUZ6BVVDz96uXI+IP2Rpg0MB+vEbM0u5q1h5vVKwWeazkteCXEA/kFTbrX8fsORy
431N8X6LhORFn1YbQE/fBrzyD6DrhIhOCt1uJTtHVl1xIx1FGVk4nLJ0Ef795vfjxz//DQ4dPoSJ
48aiKxRCT08Ie/bsRUdHOyqCAUwaOxpf+uS/4rKz1yFq/G24tMlQOGw81zFEotGMQk6ShuPHjsHy
JYvw429/pU9VauDqSy8y8mcxHnz0SWzZ9jJ279mP7u4ejBnTgGWLF2DC+HH4zZ1/wYsvbsZ/fORD
uOCyK7DmrHMwfe4CVNVUQE/oaG9pxysvvoAtz2zA4lNOxds/dBP8/qoUhaQVhZu+2yuNeU950mwb
WnZSkqpIRt75w+9+h4MHDmDlsiU4dfkSqdClAJpl0yT73I8aE9s53hTE+YLKEu6O1k0BHvmW2iGl
yYZMRgQCgaA0MW6+8iVMxXyuBByV91yElteU3nNxc2zs3Nw24Wh+OH0NcGSbCmYzUha4gqEH3ebQ
l9+s9cDqtxj1d12fr0gpb0Gu4GYMRQJn3QjMPSf34GYDAX+DLgW4/hg1AXj+90DrIRWN+2RDIa1z
xNJHMJD6V7Bo2sjwdy3D34ZFxui2NKeZa+sZ3qeZ8F5y/lmYMW0yHnjkSTNadl3dKMycNBYH9u5B
T3cnvvnlz2Hx3FmoH1WLWCicW2CaISZDXn5lJ776vR+jpbXNmO/7+iUt4PPh+msuxzuuvyZjWmdO
nYz3vO069ITD6OjoRDwWR3lFOUbX15nVZc2KZfi/n/4aT23chHv/dCfu+dMf0DBuHOrqRyMej6O1
uQmtTSfMADqP3ncv5i1cgHOvuBw9IR/s2Ui+Kmb8fEcMCDEKt/E+6OsLfJPSBvi3IPDk05vxq1/+
DBVlZXjXW67F6Lpa5cfTSyRtUUYWB4yOt/oGYxJyk1pcDTYYGOeyLxjpGKPMNujYWghJwWBPBHWI
cmegE1lRRp68ZZsOutugemb/87kTcGPnATXjBu76o1htlBtjVJaRZM0Viy5RZutdLaVbwXRJy0kD
Trzp5mDaqcCKa5WrgJqxkteCgYObQ/Qpe85HgOmrBv/3G2YAZ35IkZJP/QQ48drIDnApykjBQMvX
A+mYDaKMHCCWLpyP5YsXwufTjMNnKgbnz5mNj3zqvzB3+hQ01NUh1NU17J7riY2b8Oe770VFIIjR
1bW9gVv4fF3hENp6ulBeXqbISAdUlpebRzqoRvzm//wHHn78aTz8xAY8+/xmdHV3o6vpODQjHxtq
qrBk9qmIxOJ47KmN+P5XvoQpM6Zj9pJliETSCMnkOWp8FuWcPg6QP9VsfyMRaTwK9u/dh69/+b9x
cN9enHPmWlx31aVSiYcaNMs45Q3AGR8YGiLSAn1TXvxZINajAtyEOqRsBAKBoBQx9VSg6i+5k5F0
/8EI6KUG+kijL8uBmI/ze+MXAo2vlX4gm6FeNMnCOH9QuUsC/IJ/V0EGBYJ8QIXt7DOAMz84NESk
BRLqp71TvX7kO0DboZOv/yvUdaKMFAy0/jmMw4Gs7vLsr92ibVvvh4vfyIwBapJ/SFHBeVDM9aon
YZov60YmdHR2YUJ9/cDTNYQIR5SSc8Hk6Xjj6jON1zoSRpoqgkFsfG07/vzcE8m0DjydtVWVuOri
83HxeWehsakZ+w8dxrHjjWYgoCmTJmH61Ik4dLQR7/7XT+CFZzfifz/zaXzqS1/G9AWL4POVIZ5I
3bjSbNlHYtKqin4/zbPjOHpgL77/31/CA3f/FbNnTsdnP3YTGupHZVHDupS1oDCgGmT22YqIrJ/q
/XuMItrdCnQ1qjPfp9+3sk4tOqsbvEfhpkLzzJuA1sPArsdlYSeQBfNwmTyXujJSVK+FxeSlQMVo
tdPoNVMZZGPGGtXPl1obpe/HukkDc0/C8W5RMpBN877hXa7hLiDUWhz/l53GfCEWkTaYN3lUqaxJ
vBCRktcCx77LWKBNXKJIwJmn57AGMPqHcKfy8djV3H+uTvPr8mql4OVRXoVUe7ksoEJz2VVAywHg
mduBnjaZe5XSvQSlX1eycYXp12aYRwVGbg7qWXIn16Mvl6NJP4vaAH3eqa8Nbeu10j69YRwuW346
YvGYSUZWV1QgbEzmSEb2mjbnifKyAKZOGm8e6Rgzuh7/9YkP45O3fBWP3n+fMY+M4H3//u9YtupU
Y8wYYw445CNTksJI3FARufki2tOMV7e9il98/9v46x2/x/Spk/Hpj96Is9euTj5DrmUvKBgmLADO
udmY1M71tgjjBKTjOHBsu4rSuOsx4ODzagGTUqlqlRN17rLOOVOZ9FF16Q+6/wa/d/ZNylT70Iv9
iU6BYCBggAkGSXIiQo68xA5L8kogcEPDTNWnH94KxCPevsMAafTJWFZdWs9C64B55yoTwYGC33/m
JAhkc9gYc1/6myIYCt4HHzDmD8ek7QgEpYJRRh++6i3A/PO9+YikAqWnFWjcpTZfKBrY90z/dk3f
pWNnA9NWA7PXqjNNsdnXuqF+GrD6rUD7UWDr3SJKyASujw684EzWntitrhMIPELMtEsBSTJGLwFf
dfG4khzG4nG0tLchmiQjw+GwGdym9xqmucjpveJ15yGeSODL3/oBntvwFPZ96EN4/VvfirMvvhRT
pk9BeXU9AmWV8HGHjckxro1GQ4h0t+L40SY89dADuOu3v8aul7dhwdzZ+NiN78Y7rn+91LdSWICd
/i5g6gpvDvsj3WrhueUvwOY/GpOPo9l9uoQ7FFnJY+MvgVOuAU69Xvk4IlHpRnzSd83hbUDbYTUh
EQjyxfN3qEMgEOQPqgGnrVQEf+dxb9+ZuEgp5QcjOFouoMqMabMH/8gVJGZnlHAgG6/TRC5gt9wF
tOyTOl7KKKQpp2CEMg/lwMILgSWXeQsoFgur/uHle4EX7lR9XbZAM9zU5d95vHCHCoyz5m1KnEC/
vJrP+bcoYGBk+OO7gEObpazSsedpdQgEuY4Zjmba2S7MJP7T0s76cB18bCa3/QKYIHsgm5RgJv3N
tAeSCeY3fD6Mqq5CU0urGfDF7/cNWc5YZGTCSEdXZxfC8ahJkuqRGCJhpUKIxqK2vCgurr74fEwY
OxbfvfUXeHrT8/jR//sq7vvLn7F8zWlmtO2J02egqqbG9N3Z09WDxsMHsH3rZrz47LPYtmUzxjaM
xrlnrMWH3vN2XHrBWX2Erz2IUdaANRnqhSB/zFwPLLgAqPTgyoDk4qsPAf/8CnD05dyUH/T9SEKS
i9ZzP2JMfC41FqRj3CcjJC93PGwsdJtUyHaBQFC6k5xS75tFXJ87uKDkRlW2YDOm/8d6pZb3Ai4w
nXwyuv0e3CfTOYPjEDe/aie4/KbuTqIuvsRYqJd4IJtcFy6C4V02Uo6CbBg3H1j4OqVY9DIWUIn3
2PeAbfd6V8MTEeO72+9XxOSaG4DTjKNhutrQcsKsdUbffD5wfIcSQ0gbFwjc64pXM+0M70UZOdRl
qZshYrB03mz86Be/w/Zdu7FkwdwhS48V+dtvBuVJ/ZsvSeIw6jV9SfoGSWSwdtVyzJv9Ofzx7vtw
930PYteefXjwrj/j73f8FsGKClRUVZnqyJ6uLkRDPQgEAmgYXY91q1bg0ovOxfVXX4bpUyZJZSsF
cAF5+juU034vk5Bt/wDu+wpwYtfAI9wdexW4978VsbnqTe4mcVSacMf26PaTz5G1QCCTYpm4lzqO
71QL1cosBCJdaphuDzz4jaQJ4ORl2e/l5feKAUb2nnum8muWfYKolII1453NDBnIZkKJBrKRNiIQ
CCzQVcai1ymlohtIPO7bBDz0TeDVB7OrId1AS6enbgVCbSpYzvi5cPQjybFlztnArieUKfjJMJfS
C3CNQJDPHMBBtxfop3TM5hLRKZjNcJtw9AtW46KSy6aGTFdGDlApGA+FcfrKZViycB6+9r1b8fl/
+xCmTJ6IsmBw0LOGRCPh0zTlP9L2SAGfIiOj0RjisRh8Af+gpWtM/Si8/4brcNkFZ+O5F7fh6Wdf
wPadu9DW3oGunh6THK2aMBZ1tTWYPWs61q5aiTVGns6dOT1ZNOmKSLcyR4aylz4lb9BkYspyd7M0
5veeDcAD31A+YgZKRFpgYJqHvg3UT1EO/91+f9mVyiycptpOakxG4QtWZVeucDJlKizTdnOpwGGQ
ndpxykyFZivWPfjskS7lk4V+V6jwzPf5HSeHVUoxSr9qlaP67xrHY4oYZnq6WxSpm69vMv4Wj2xK
JN7fDDoQ7v83lh3z3bxHbX9/oEwr02nl3VD7UXN7Vnua3ZS4IyXf9CJfP1LSmA3cWDTbe53qfzLV
BztYn3iwXvDoaVH9QrHyjUoWq65n6lu5YUTfkQdfdPe1WmvU+Qnzs/uLZD0//JKxAK13JyMLuWBb
eJHxHFOdVY8M1PbET4A1b1EEbDZYgWz2DfNANqW2IGbZsN5wE9VsJxyrKxzG+6hqJ2YwnnY1ZhbT
FzD7dNZbthO6oQmWp1p+WOmJhhRJHepUafKqLqNamG3CIsLZT/B33MDvjM6geqPKLJff7/e8Faos
eH/OmXjws/S+ir/DICfmfKWrMP6/zcCIDtY8zF+zvEO2OZ7xnVGT1NkasxlIyRxrW9VYzX6X93Xq
BzgnpL9E1qmBguVmT0fGvjCmnoF5Vyxw02TWeg/BxIxnPrYDePJWRUTmOx+havy5O9Tmz9k3Om8C
EfQ7T4Xkgc3O9ZVtg/mazeWU5euS42am9sV84JGpb2FdIYHKNUQ+7aaQ47Pb81rrHqbXTVV6MuQd
+yCmgW2Y/WN6f8R6a86d2lV/1NM+OOU4FHNgHd4VkaKMBHILYAPkFmI8d8SiUYyuq8Unbno3Pv5f
X8X/fu9WvPGKSzBx/JicguHwWp/PB7/fj4DfZ5KZVVWVKC8rN14HEAy6F3c82eH7jQmNT0tVHfgt
MjIWMwPbBAODb05uBby58qJz0RMOo/FEM5pbWxGLxTG6vg4Txo5BTXWVabaduWycQjt5KX9BXpix
2n0SQLQfAR77AdC4s3BEHHdHN/xSmYjQT5dT2+Jid+Zpyn+kkx+uU16f9H2ZZSHPyHwbfqHOZiP1
q8ipdLA925iQzTsHGD9PkUQWCcgJYdNetUDe/aSaDNFchANZIUlJEpBUqE5cDMxZr85c8JanLdpJ
PpLMpd9OOg5nnjB9rYcGPqjy2WkGk23xz8kDy79pT+pkmiY2k4x0zj1bpZUkA80v7WXJct7/nJF3
T6v0Mu84EdWHiFxze1aCeUq/km5+SkdSvg1Hkq/U08gJfN1EoH6qWmxRMcggYpnqgx1cNHeeUCrz
o68A+54FTrxm9GsHMxPfeffVR1SfybQGKjJfw/75tSdUP+QEmmhTDZ/t2RiVtdnoz6KrB68cSCIx
8EyNi0r/1UeAl/5ujJurVDlx4ZMN889VgWxYJqXWZoebn0GOxdb4yP6SPko5TvMYNSF7wA0uONuP
qfp05GVlXkr3MiyTfIiklIm+T/X/3FjlPIb+sJnG8UYbHjU+dWFvpacjeVABvPcZZfVBFwduKlo+
67Ir1BzH7D+Cqj25Yc5ZmYm7g5tVYBBrPuSpLPyKbB01UQU+5BySaWDbYfrS3Rx0Jtszff4dfEE9
a9Nuo085mh8xPPcstUmdDewb+WwcN1kGrCuLL1b5x37W2gDnPI7Pz7wgycbxefqpzm2b6zL6S6Sl
0EBcB7HOzFoLLL3MWWHNvpTPcOD54rWtsXOMvmyO+3Uka7f8Gdj+QOE2Rpn3L92jymPp5c7ELAmm
qaeouRMFEdnAdscyzmbtRUKOecqytvf/XAeYxOxaNRZn6luYXgbTpI/Gvc+qvoTtOdd5t17A69ye
11r38JkPbs7vXqWQd9nAdss+mHOnGacb/bDRR05c2L8/Yp/Dvpb9EOfVTBMtGNjWwh0jj3bLUs8C
OXNvJ4MyMu25MgribOeM16ULJ/PJAmOSHO0KYf2py/CtL3wSP7z9Dnz31l+iprpS+Y/UNQ+30E1T
ZX8ggLKKclSUlaHW+P7E8RNQX1eLMWNGY/LECaitqkTdqFrUj0rd3ezo7EJbRwda2zp6iUeaZduf
yZ/suKORKCLGwd8YKpB4raqowIypk82jX/Hqmd9nOrsd4vOrQCDJxYmzF1O4zX9RJFy0wAvdVx8G
lj+rJhhujrOpNHnpH87RPWlqwsE024KZA8+WvxqT4wNqEshFw2lvNb5zVdKZtpZ5IcSFJw+SnXTc
TULzlfvVRDcayr8caJJIH5qr36J+xx9wHnS5COCx8lq1S8mJ8abfqTLiYj7XySKJsZVvzO4vjQun
5+80nn2PmjCSHF5wHrD2XWqC6DRx57XLJquFA/Pu2d8qlSsnAEOxI+n2rAT9GjFP245Kvg1kMBVl
pDu4uOJCnvWHZnI0E/a62clreZD8YJ/EPmDnI6pf4kS/0BslVt/JiX5tlr6VC0oSqLoLGTnFxUSb
v9PdNrjlONEYByYvdSYGqDzd8YjaJNj+kLHoWu28AGT7nb7GeJ4SC2STq5/BoW4nnBewn+W4zr6Q
G4c+j1ZAlpqXi2MqX01/d8YYuek3xvj9gNpsyscPNS0XSOZwU2nlG1TddlIo2dNjgfWJaeF4w7rP
NGWbU9B6Y+45Ki9yAa1fpmQgLdledz2p5kNe+yzOO2avU8QeSVG3eRtJSh5sL6vfrPom+h3f/CdF
DpOQGMgGCglQBkLJBkZ3Zl94Yq+69vwPq3xLLx9LzcX8WfEGRVRzTubmuoiEIutS8/4B1Js65ad9
3bud6zJ9Mr54d/HaIFVjJKAaprtfS9Kc9bSnvbBp4CY/fcJzM4sEtxNY33gcdyAjubFHt05TspD0
3CDm97c/qMqQmxyzTlNzb0YSZ5t2qv8ULPDg3I5EKufdB7cUT73qVvZuz2uNqayrBzbnd69SzDvW
YZKh3HBZ/SZVj5ws7fg3rrd4sA/jmMC6zbSwz+DGazE2dIdibM+m0dPdvzuClZFwYVt1D3/PTxGZ
miId0a4erF2xFIvnzMBz217FoSPHzYA28LJe0HXEjcVAOBJFyDi6e0JobWnFM5uew7ETzfAFAhjX
0IBxYxswb85MnLpsMSaOH4sxo+tx5FgjHt/4HHa9thubnt+MQMCP7kjEjGRN0s8ycbaUkZFoBJEI
F6dVw7DMc1VGChNZMHDA4eDvNrHnbj7JGa/BCXIBFwLcaaPCzD5Bz7hgXKRUnE6R471WCw6i841B
8fyPqUW0P4eul4uhS/9TDaoPfwd47SljQBugU20O0AuNSelZH1RqDydyKusCpxY49TpjMD4DeObX
yvSFO8e5LLK8+rDhRH6KsWhf9y+KBHE17cmUd59VE+BHvqsmokNBrBXKX89IyrfhQvINFyJy1fWq
/xk9Nf/7sQ8gUcNo0E//TPUBXhV5Xuv6oa2K0MlGvJsRspMBybIRoVRKTFqqCJlsOLhVLXoGiyhj
etkHuwWuIenAdkcz052PquALVGI4BWBbkgxk030SBLIZKiJy/nnAeR9WBFje5Eulug/nGgy69PTP
B9iXaopg4wbiuncpFY5/gGIAktZr3wEsN9rvK/8EnvqpMu8vpQUx54icKy6/Glj/bqU4yqfv4wYM
/bOSbNv0W2D/C8oVTqHBtsl+6bx/zUxEZiI2SNywrZKYdHKVQcsVHgMhI7mpM2mR89ybKlmmhRve
xcLo6cpfo1u+UBFHFRnVxYUGN85Z30lMsz25tRWSxMy3fNWZFBmMmWnMna8F1rxVzbFyAccLzueo
COQ6gIRqMc3pSwmlknccH7ihy819bug6kaFOYwLXclwPsz/a+Ivi9UelSsFkVEZm4mVy4emS4+Sw
8xmZjb0d6FGABYdu9sE9qCkrw3nr1hgdtj/3OySUnE+PxREOh9EViqCrpxtHTzRjx569eGn7Ljz4
6JP4270PYuWyJVixdCH+dt/DOHrsEJbNnob1y+egKqhh1/7D2HJwDxZNmoZo0jeUpYwMhyPmvYef
n9AClLtg4OBkvMpDBO3dT6nd5XisOOmgU2pO6NwUD5zEcuHur8jPvIc+p0jeXfAxtZgcCEhe0jyX
i2oG9Nn5WO5R/qjE5KT8nJvUwK7lGYGKEzWSGzzTNPjwy4UlrEgkcOC//PPAzDUDX3wRq65ThMX9
/09NthPx0u6nRnq+iTKycLA2DwpFRNpBhcsln1XK8KduU7v8eoEe1HSR0ZI9mjT757Fz1UQ+28KC
PnnHzsquXLD8ReaiNs/38aob1GaY2wYBN+So4uLvNe5WRAEVexUOPvvsgWyiJRbIJte5+WCDdYSK
w0IRkXaQSFz7TlXm7EtZ57z2pZyjUEFEFQ7vMWZGYdJkknTXqvnJA99U5MxgbTjpLuVA8nbt21W/
5ebKIBdCgoQ+5z6P/0jNoWgKXEjQPyQ3aWgO7WXcZfvmRgN99dM/oZNikBYsJDqpEstl45d9JzcV
3TbfrT4mVESCa8wsdbiBc40DW1Q07GLgyHalkOOc2mlDnuRT3RSl6M1mIaV7LAOW37n/atTpN7qr
e51g9k262jygGw8vbTYXM229xO411HlngcQjN6rob5T38eUZM8PaIK431k+PfF/1R8ONXM5VGelg
TT2Co2l7ZRfdDg2FVEgSsbix+OvsUvceAF+gJYPPlPn9xry1GmPqazF90kScttyYyF5l9PFHjuGZ
ba/gvoefxFe+8yh279uP7/znTbjhsnOMdWcCOw8ewye//hP8+pmH8cmLr0V1WYX5bH7e13gVNaNp
J1KetycUxs7dexGhktNajDANgQDmzpqGqsrUxUBjUwv2Hz6SNIO2rjfG8poazJ05zfR92VtSxt/3
HjiEptY2GwGu0jJ5wjhMMg7vrUZ3qAeAMJFFBP1eeVFo7XsuqewoEmhiyMUA/fS4pYc70RUPD5yM
9AWVCobqtLrJBcjD1cDFn1ILTfr286pmoKn16cbk/pwb3U1TcgFJ0tPepibeD37DmOS94s1ZvGtz
Mlr35CXKFC1fQs0CiVj6zHryJ8qvVKmRVgXxq3YS5VspE3zDJY1c2FP9wYl8oYlIex9w1vtV4JTN
f87sbH4g9ZzmpPQ9RfcCwYrs/SF9imWbxJs+ih36eNZn+lelf7vB8mtIhRYJUid1PMebnY+ntje6
6aDLBScykvdcUmKBbIZDG2U/ybpy1gcKT0T2zgWMxeuii5SvsIe+o+q3F1CZdfYH1Tibq8LdS5oW
v07NIx78llIj28dvfZDrA5WBnCee/1Fj3nR+Ycav9OelKokEJ/Ny810qQEYh6jFJXapNOa90C5Bo
gfPQQy8pcpFEoBMZSTKEJus0Ec1FHWm62VmoSLWsz6Yrn+BMTzFBAYAXVRuJUbqKKRbYv9L8l23R
LT0cN7kZ0DVA1xck06gIPfN9+ZNpFmaerkyVWQ/oi/BkRankHdvzwguBCz6uVOmF7o+sfu7Vh4sb
8KwU5gFZlZFu0bS9KAGHnb9IexTttEjJvc+o53D0LgOVWXOhGuGAH083D9NwiTtuUVv6jGPahHGY
NmMqLj7jdNzz+NP48e134q8PPIUVc2dg0YwpmD9zCj753utw9Qe/gG2H9+PMeUuU5Z+m/EiSiCRp
aVdAbH1lB27+zBfR2taORNJkymf8WsPoenzjlk9j/apTUtJ459/uxXdv+5UZldu4WzJtGpYsnI+f
fet/UnxadnZ14b+/+SM8vvFZ4ycTySqrmf4033LNlfj8x2/0WObo7+BzAOUsGGCny8mQ2ySNaoHj
rxkL2q7i5vfRV9Wi2W1ybypRRqkd7IGAk14uJDghzFeJaF9gc3BmlDiasbgpLLhA5SKIqopCEpF2
UEHHyRojlpNAyFcdxXpy4b8pZVOhFiTMB5p4cMDvbC5uhPKhWriPxHwbDntFQ5VGuoQ47yNKDVRM
mLv8bwL2PGMs7rcXLs8YLZuBI7KRkXQ1Qb922XzQ8e9OfbzlL7KifnDaKNsk1Tg1LhuoVIVysWz3
mfza00DTPlWWPgcik4FsNiQD2SRKPPhUOhFForWirjD3I8HDTTsv/RVJIJouM++KCS6mWf67Nyi/
2G6grz+a71IhWGgi0l4nqeTr6VAKSQamGopxzlJArX+Pmq/kqzxynNctMeZlN9EBvvLpXQgTScvP
t1fTTRLAZjvfySimqq/jxrXTHHlS0lS7KQcycnwyYKNTfnIzh75mT+wv3jhl+fxzq8dsr1TYtx0r
7php/sYRdzKyPklGsnwG2q+teL0q10KQab0k1tmqHzm2qzDR4gs1By3kvUoh73g9N0RPf0dhiUg7
uAFGdyxc09HvbCmuTbyUrygjC7laGIhSMtluzEjWPsTjCWgl/ISmv0fjqC4L4vorLsaCObNx4ye/
gM9//1e47ZaPolbTsWDGFNSMqsSxthZTEZnQdTO6ti/pQzJdGfn0phew5aVXUF1egUn1DeafjrW3
mIrGzcbn61f1OailL8oHHn0ar+3Zh/GjRmN0VTUi8RgONp/A/kNHcLSxCfWj+jqeY8b7+x5+DCea
WjCtYSwqgmXoDPVgX2sT7rr3AXz+4x/ModXoOZb7cGXcSwzcNfZ56G64S01FR7F3h7jr6mUCykmI
113uTKjNsOgkUUcfZSRDGU2NgyEDGZD0pEIn4IFEYiTAYzuA9uPKObMT6G/p7A+4Ow1nuuins6tJ
pY9m8kwL00bzcprYO/krY2Aemr688Kf8zQ3MRWmaAogmFQzw0tGo6odpvmmkp2aMSh8nK26E77jZ
KnAETcpPxkh2km+C3kl0QCl1GqY5ly/rBzdbWEe4QO61VPCpwApm1Nrx7uT2rNNVfeLiulAk2KGk
P8dRWfwrmgFuxmX26cX0knRwUhIe8ugvslBgO2IQN6c0Mf9pipnuM5nWAiQk6Wuq1oHMpAJ/RgkF
svE6dWJgFloQFMoqgqoXBgpwU+qy7jC/GIjAibDhOM0Nt9Yjqg+0WQCZcwSa39MVCtuMIzk0V5FK
W+9xNhNk/SU5tera7PU/hVDqUuXNczg5t+HYzXTxcPJHyPQvvRQ4YtSZJ27rS1ehN1Gc7keCfs1b
VJAHL0Qk859+DhnghP0Wv8N5JvPf6Vkt0IKABDT7PgaSyCewEJGr/zgqs8z+JxmghXMnzummnuJM
eLJP48agJ6sYLRl8cL57W2FaimmmT1ce2TaV7KD7ISoWi2kdRbDcvYgMrPYz0P7NjP5c2b8vIfHE
4FFsqxy72I9UJCM0k7B1awPsE+gXnGMBSdVC9MGFtA4oxL1KIe94T7rImHuGe3/EuQTHbZ65EcaN
/KDRB49KBgB06pd4f6o/2S+4pWm4UmwOY0DAE+eWibeB8DT92k3Qb0a0DkdjwyK9USOdWrQDK5Ys
wFc+81G85cZ/x0PPbMG1V12AHa9uQbgnirE1oxBP6GZb95kRthUZmV7k3aGQ+fnSqbNw84VXm5/9
+OG/47FXX0Q4nDrIk6wNJ3f8r1q5Dq9btgrH21vxxb/cjmPGORROHRAj0Sjixr2ryspw4wVXYda4
idi0Zwe+ds8dJkka16naLKFJtSADSVLnbYLYelj5iSl2Xjcf9OaPhi4KOLAVKj2cQB4zFus7HlWq
xmOvqskXiUKShtwho5kSJz9OxJ9lHk2/J50O0aw5mFNp4BY0x0rX838wFrxPql1gDvQc2E3H0cYg
ufRitWDMRpZyMnDGu9V3ObHWC1iIHOAZme/5PynfKjRxI1nKOjVnnYqaSfNETi6c8o1g/r58v/si
dSgG60LX++Gab7n6JSpln5FDlUaaAtMk2EmJwsUnFQLP3anIERLW1q4868h4o73PWa+UWVRklzlF
jaxQi+U9z6ogZIVoC25+I/mbXJybrj3SzC3rp6mFRDYSlX0mTSS72wvrB8sJNIl1U6fzOUg6kvhK
/y2SlCuudiYjCQay2XafcY9hFMiG/QuPQmHjr5W6tMelv6oZr4h0J/UwF8AkbF74M7D5r6n+c02f
jpMVmXnKlcqUngowJ5KRm5wkLqlezQaaZy+73DlqrVWPuSG54zE1dtPEtTFp4kr/kny2RReqyNtO
Pru5QKdrD/bxVvRgzgE4T7Gi0XMOwbmKm+9rLqibMrgJ4L3CGaxeSCIy4AvJaDdSj30BN0zpV5wq
TvYRHOd4Dz4vlYAk30ZPcQ/Qx75tzZtVWhsLrAhlubANm/OzqBpfy5KbO9wAZF5wc8/KCwbS4ljN
Tb9sZArzhiQq64ZThGf7nIzEt1OkbrMffFHlYzG7Cs5FvWzsM88y9X2FBgktHq4kaplqs4VKD8ln
lj2jO7OPZlvlJjHLnGsAbj4sv0qNvW4CDsvsvbWA5FUpKSOHOu9Y9lRpczx1qrvcyGg5ZPSd96p0
cQ1EopvtnG2PLidWXqMI0GwKT95/8SWqD3j298PDqkGUkQXIwXQTXGR4DYdrMpjvBgMBUxnZzeAu
2rDJCcTa2nHOutVYvGA+HnjqBaw8YxV++Pt7UKdVY8nUmYgYDa3MWJhoSWUklY2JRDyFbAiFFLk4
cdRoLJs6y7xuwii1COro7Ey5Nh6PoyuknKuTWFwyZZZxbRsqy9WuWWfa9fRH2W0ctWUVWDR5OuaO
n4KOkCKSorGY8dshVFeUu09gUs62z52OlHohGDA4AfOi+KMyMhYtfnpIqHjZCada0RcszIDL3+TC
n/6ieLarPzl4vXi3WtTQryPJP074nXb4eC3JBk5oOxszXzPtFLXj5jTBZ1vm4veBb6izPV0kAnjQ
lxAd3F/4MTUZzkYsk7CgKQMnyoVyxsxB/elfAI/9WO2Gpk8CuAgzI+Iadef0G5x3sc0F2kylGDnZ
MdzzTfxB5gdGe6S/KydVJIO/3PWfxnlz/0jYrCN09M/jgNE/Xfd1YPpKZ9KafRYJy3zJSAutHvxG
zjoN2Hp3fzJy6rI+EiXjYvQEcGLP4PloIjFAM2C3gBymv8f9mQO4caFC0oRkixPRQmKMizO6PImF
Rm478fK7U5ereu001pL4eui7wKY7+6vHOH7STQAPtqOIkd9r3uS8+WqprbKRkaZac5VyM+AEtlEq
kZ/+pdpQSFd6se0wYB+jtp7/EUVkOyk3p69ShCTbBZ+Lde3uW2xkWD1w2WeAc29yTteGXwH/+JL3
cuIinWkbN9v9eZlnz//ReObbM5uUm35yLwbOfK/KQycVsmmyeRawZ6MqPydlYC51mPfh5i59UnIT
kP0hCS2SpTQRZX3jpk2jzS8i1YCcBy5tUkR1NkxcoNSOXshIL1G02Q+yf289XOT+b5Q63MDN+XB3
8fsGtlMvQb4453Gb93itG1TMcdOPAUvYl6f3IySESYzTDP+CjygVtRNYT5zqSi5p1AvYr+oF7qOH
Ku8aZqg1lhOZz81bikoe+xHwwl9SFb1cAx19RW1e7X/e6IP/VW0MZatP7P/o0/KVBwfuGqzU58o5
RdPOpoi0vy983JZBzpWBOMh0lo5WlJch6Pejk8FnfL5hkxs0udYCAcyZMRUbnnsOn7nle3jm6Zfx
jtMuwOiqGkRIDvl1pYw0jngsYRKK9mdv71BmIQFj4dPc1mrmgz+5CDrRkro7HzPu19beaRKWiVjM
+HszuiNhlCUHzOaW1pTru7q6EA6HMK62Gt3dPWhqa0EsHDG/z8jezO/qirIcWoLXupBW7sJHDhxl
Nd7MtOkrkouwYuc1d9i8ROvmxFZzUEZ6VtQYF77ygDFB/4pSWGTb9WoxJoR//x9FXNLX5CiXwXL5
FWqA5oQynTCnisFL4BwO4Pd9TakqsuUJ+4Dn/qhUVhf9mzL9zEqCXKiILqeojF7zjUQBF1qP/sh5
cKYC6KHvKRXJvDOd6xrzg+U6WO3Zq7lKISMZDvd8y3UyW+rRtIcijWzLjEhKkx/uxpO8qqhRr7kw
Zh/zsDGxP+TB7+zeTWozgotbp8W96au03PlZc1UhuvmNpJKIfiN1LfXm3BRxUoJZ/iIHS+FK1TsJ
fSeFOsth+0PK/YaepR/e8bgijJzUafwNmruy3JqGOJDNUM+b3H6fLoca96gz24bpn6xK+XkOlivC
gn4FOc7GXMxYSd5xo5FKmHqHcbcyScxkS1v1WGDWWmNxOsf590ga3v8tY2z+gzORRpN9bkwxTfPP
yb5BwfpJInv7w8ptw2CUuxm0ZrWzebLVNqiKeuSHRnnc1Wfe3I9k6lGkAMlFLv5JTDr1WSQa2L+w
XdFMOu8FVVxtEN//TSOdf0stF7bHF+9RpAPrld06h2uqg0mF4gKHeR/rBNWOLz/gbKrtNYo2zbN5
FLudcvxxU6qac5ckSVjs9JD0jHR7q5888l0DsB6QZOKmhpP/Sc6b6U+W5XzOB51N2zkfN8e+ArXF
UoymPVR5Rz6CqnK68HACrUm4+bLxd9k3NuNJwQdJyNqkEj9bH8zNMc7H2+4fPgQjstBk2T5DNjJy
pCErr2hTz1mKRz15kZNiLvk1Bl2pqqpE04kmo/PyD688SehG2iuw5ZXXzONday/AGbMXoi3c17j8
vcrIuGlqbSc/WlqV36UyLYD2jg6UB4LGa9XYmppboSdNvc0xIBJBS0sbgkZj99FXcbsKelMRUDvJ
jc0tKffu7Og0xvc4KsvKTBKyvb3DJDHLjAl3T08PWo3fnjCm3p0MSjkjraxdFLDCROYHTr69mGnT
j2NiENwccIfdi5NgTmL9BegmqUx78mdqB81t4c+JGAc3Khqrz3bONzom5wKCk9/0ialpdrXaWR1E
wuLZ36pJvhdylooELrRIOmQb6OecoSb4XATna2pAMiWT4iMTuLNP589URDmZybFMfSf50Cf5JuBO
PY9xSXMk9gdUC/DghPjYdqWM9KoMtNTOTgt7Kqe89PO54KCL30j2f3UTVT9tqd1JKFF95NT3HRxE
f5EmOfg6d99/bK9URvY4KEt3PAKc9ha1OeCkel1w7vAMZDPYoFkyD7N9zFOEHRVsJN4ZuZgbfXSH
0uXRhx3Heh5OZKSb2opqtilLnRVtHO+3/dNI+z+9+fqjEo/PwTmBZSrIuRYVYpFOtZDn/IvzXfYP
+ZKRXsF84gLcTTHMtvHET4FnfuOtPtN1wyP/p/orbpA65eXs05XbEvZx+QaPoAk5zSyz+QRlf0vC
MRO4Uc1+iXO/bO4lWHasHw0upto0CZ+YNFd3Ink4d6S6ttjwojA08yecGriraGveuLd65NW83A0n
9ily2ksgHPY1nMORUJ/gQCbTCqGsEic9hiLvOHega4sGFxcHOx9XRKmXedTujaq/ZvvNNjeh6pm/
S1desQhGCmRlUUDUVlWhtroKhxub6EAyu5+jEgUJw972MKreTDv9QFp6A0awZjRtRUamduKNJ5Tv
jVGVleYj06S7skyRFd09PSbZ6E+ad0UiUbS2tyEYCJoBb+iBMmBMFKqCateMqkk7OruVD8HKYBnK
jXylAKLMfF1m3Dts3KtdKl+pwysZaaoiTzLil8/DgZQRvOMeiVYSRNxBp6mdmwJm8mJjQHyiv6k2
oy6avic15wk+VRBefOdYAz0XblzoZzNdIFFJU26aUuS72Ge+5eIPh6ZRXFS5+ezSfCd3e5N8E/QO
zrtTzQEJi1jOxf9n2MNGUbCi8FFw3fxGmn3gMjXRJ3FkTmDmKYfx2dJi+YvsGaS5A/vK6ae6mynS
pJbt1okQ4TjCPOGCxsnk1vRjuEZd29U88up9rnvImQJamEREhTdzzlzIFH+Zc0AoEkijXfwy0hyR
hJtV513nVhHlboXKTc4pzOitJ9Rcg4pOEltNe9UiPpubhYLvy2vKFN0tSi3TTnPnXU/mRqyT2KOC
kIt7J3KY7dNUWNflHziF7Y0KyIG4f+D8ioQLfZo7maxP8GCqTZ/BvMapnvF3+HtdLcVvj16JM7oL
0U/CzRNuMvHwCivatxOhxvHN58dJj6HIO7q44aaU0zVc33Aj36uimpu53BTiBgA3P7KtlbkRRt/S
dNdyMo3HyD5+BFJMrp0C1mQzzday3FxDCYvJvEZNzsWMm/PkBOpra3DshDHx82nDu97oMAlEe17w
iUhGRmMkI2MplaC9S5lpm+SiKRbVe5WOPeGwSV76k3kSjkSNuVoUNWUVJsHI3wn4fMZrRUYq/5M2
f5RRpXYgEVkWCJhm5VRVVhjvm8PdCDE6uGc9+ECiaVtqSVnXDhgkOrwQcZaPxmLnNRewXjYKmOZE
nmVv+jr5h1ro5HIfEkqnvkGpM5xIIKojSS50pJGRU5Y6K4NMEmqHmogmclADHH5FBQVwiIthKky4
g9+dBxnJXUGal/XkEGCCTqTdFgHVowvrkHyoFs8nc75JAJvioscDCck+h/0KzZlqGhRhkM35eqHr
sT3P6Lqi2cVvJH3D0Y1ER5KYoZlTpYO1hOUv0jKTLHYAmwVJs12nMYftlhtDZhAhl/txQ4i+7tx8
7C29BHgpGcjGaZOPCyAqA/NVALHP4Tg3WH44C9lOM4H1wy3QHcuUii+2E27+kXT2Ev06W9roW5u+
yjjuu43dPHJ5vj3Ggr77q8qNFDcoWFbFUs16SRfbMzdT3eoxlVGsx/Rfm2v5UQ06e60xl7rGeR7F
OQuPPc8M/JnNTY5tSuE40HpHApUEIcnEbP0FA3RMdjDV5vdoys0NC6dFnhlscOvgjE0Rj4pHS4lY
7DSRZNL83srUjJGQx29xE4+WQs2HvN/HCuTjhPKk25VSDTpTiHsNVd5xg8JJFUmQ8CShH8+hD6Wl
glPgMoJ9/6hJasOppIkiB5rFyUw7wzxq5JppZ8uwfFxJGmgYXYcjxxuRYKRqY8DXh6nKy5/m85KP
QX+R/LwnHkUsFk9xpWiabRuw1I0MckNTbSok6U+S15NIJLp7QkopadyLhKWVhRVlagevsys12l5n
l/LrQbNsKihjxsAQSH433pNQ0bpz5SIHUu6CgSPs0fzajF49COorr9G9Q23OgW681IvGXWrQiudo
fk7FAne+TRLAQQEzaWFmxY3p382FPKDT9EiOC0cSA26+drijWFadXxkxQiaDUuSyWKKqYQSZNki+
CQoG01detSIgLRJyyhJgxqlqMc8IwP4hmjJy0TzPwW8kA3WRMD2e3AWny4GqOuf7dQ+SiTbzdNH5
7hGwSY6SGAh3ud+TCjGqJtyUG1YgG2429LRmv45jzFnvcfcv5wb63XviJ0ppXYzF7VAurHsnx2Vp
7aRO+SgjIc5gSlTjeCF1s6WtdoJaCPvL3BfCuUbRJQnvVUmZT356vY7kLVWabvlFf7V0KTEQkLCl
lcbSi503U0g8MN+zkZFenomKUhIn+SgNSRLTzHTRBdldYriZanPuxb+PmZ79d2iST1+R6ar5YiHm
MWBMoMy97hdkvPNoNu62IeGlXnCThhtl8RzmWPSf72Us0Ae53Q72vYYq7+gGxc3fvhfSs18f3KRc
OTihdqw6TlbeLVOzz5mQ0b3duLTzJPWf9WBu/5D1nW0MCAaxc99BdHd0oILEWXx4ys19aTtyfEp+
FvAbzxQOIRaL9T55KBI1/UCaHE+SgCTZWFVWbhKOza1tiEQjqEwGmWkz8iaRUKbZZSQjdd08qsoV
kdnS1p6Sq61tymSESkiaekf0mKnQpKqSpuUdXV1ppZC5zFPPmetCetmmlLIQkgOHVzKyqmFw1Fec
hGgeFtaM6pfIM6BO2zHll2kg96DfJk7gnMjI6gx5RgUAzQyCLpMtTlqp5OCi1nPnEHR2DE1MmJf/
jm1PkgguVl0oxfZciDSNtHwbDptFpZhG9ilUxFE9zYN9AEkV+hnjBgd9Sw5UKacXOM8OuPiNpOqw
3liYB7Yocs40YXYgHkj62YPX6EV8NgbnYARct+AN2x8B2hu93Z/X7X5GmZ/WOLlWCCgShmpLBhXL
Bm5mkYik7758QCVHYICqJqr0+P1CRf+mf+ZCBMLgWGcFnCHxyAUq2wbHuEkL1KZf1ejCtRO6ynBy
l9G7EG5Vh17CfZ4brL7HDay/HY0De1auwRgQiiSAU59gRdfNJz9JmvDIV43LqOxUgc5yCJ5hmWof
y0BGUlU50cVEmyQkVZyRQVIxe1VGclziUfSAOmXqcEMsme580hNOkmPDYU5Wavcairwj/8FxlWsr
xzpUroJE5QKqcStdYlxQGcljOMxrM70XZWS+s958WNnk3M/vw8FDh3G0sQlzpk1BrGf4kZGWOXa6
qJOfUZFIM2mSkdazd3R2mn4hSULSlJogGUmT7aAxGW5uaTH9RFrXN7W0muRjRbDMJDctyq+2XC18
GpuaU/K1qUntMpLc1JJ+LElymibhRlpa29owKGbagoEj5DF6tRkYpRJF9/NQP0mpMN1gKsai+f0W
J8IDdcjN77otzphf6eoYLqCoUnYzRafpEo9CgwOpE2HpSWXQ4axKzWfyM5jNebB3kk+GfBsO3e1w
HBKotGGgCNOv6yJl6kd3DjRrrqovjI9rvQj5Zvo9bHH2w00/tvSdO26W8rdUDH+RuaadC4/FFyqS
wwlMU+NOtQj3ujFERRQJ2hoX4oqBbEg6vLYhN3XJYLcTmpz+/UtDH/3bGlOZr2wnNCE228iSPt+D
xfTTxnE76EJcc4M02j345VnoqbAXMpJtgxsHoc6B/w7biZv/as4HvcwJHYmTDnXkC/Z3VG9TlZ6t
rjmZalMNzSNrOSbUhsyhbYNXd+i6wYv7BrNO1Bd/DcANBC+bCGGPKjvHZw/l5ndWMLR5RxI/07oq
HVTC8yh43axXx8kEzz4jc+FnNAxrZWS/QdXtdQ5m2sFgEIcOH8WBI8cwd9aMYZk1Pk0FqtGTfiLN
x9QVGek3GifJyGi0T3nT0tqOjq7uXj+O5vyB0bnLSEb6EeoJIWIz6z5hIxf5d6pHzQB+STKyrS3V
11lzUhlZbdzPTkbW8HrjdUtrx8DNtL2Us/CR+aPToxkoJ/pcuPkCuRMquWDcXG/+z6hozNdfjOlD
a4AKDaoB3IhMKxiF/f5mVNuyoStvM5BFmRosBuqqgn7t4rGRofAr5Hg6kvKtGAvkkzGN7COolpm1
Gph/FrDgHBXgpdAB9gpZj+15ZvmNnObgN5IqIioZqO5zMtGmmWrjntwVQQN5tvqJwOx17otejnWL
LlLBPHLpYytHeRtTmSemSedrg9Om9WHaTrgAbZiizNbnnanaCcnIYpCP2Z7VS/RekiOhrtLu93SP
/VI2U2QL3Fyj25F8rMyoIO1udS/7shq1gTBQP5rc4Ohuz79c2N8deFH1VdnU4Jap9ug0U232C1Tu
NkzNfn/mBe9PJfJg1SGSyWEPhDL7SvZZLA83d0D5gBtWdRPdryPhz7WLnkc9jyZNvYulwC/UBqBe
gvcairzzGvm9WODaLcB5js85mF2p9fFelZEZvjtClZHZGKbCKCO7ekLYsXsfzlt/mue9Hfpj5MIg
MQhm3T6/30xVIp65kvuTviHtHAKJSQagoZIRFhlpU0Yy6AxNtMv8Koo4v2uZVZOYDIVCvddTRWny
JcEyRS7Cir6tdoNN03Yz49T1DIBjXW+mxfic/ierkruYPbZ7576SECZyUMDJDydqnOS5Texp/rTz
yfyjGjqBu8Zuk2DCijKcD7hwyNVfpH0iPpDvUmEz1FH2zDRkIZWLpcQbzqbXg+2vp5TzTR8G6R4O
aTTdNUwBFp4HnPdBFdRgIH4fORazHZuBvxx8+pobN3px6jmVQvMd/EZyYU4/Swx0UzkAf5F6EcqS
viJHT3YnfflMNKcuFqgapTuO47uLXyF1DE7eFrahKCXknNOB9e80yu28gbkoMCM/xlR5+xzaGQPG
ZVtkchHq5gaF6dWGIEhmofs8unxx891tEXz5gPOokAfFokUEZyLNvDyTl4BHXsF+ioThkosc5rEL
1GEnI7npRMWkU/2lIpL3Tgyi5R5dHpEUJrHnZh5tmak2vla89HBcrJ/ifl1rMjJzqc4xZGla+Lzz
1AcXGVYaiknID1V5ZMj3QF4WytpwbghOZJMXKWRmcktLThA2vbgN74tdY6oM426Tc+MrPZEo4pwP
BYJpUawLC59PQ3ckYhJ6lcFgxoWDaY5tmk+nsJG9AWz4OmIjI6OxGKLxOKqNtAcDgV6zawac4fUM
ZtPR2dV7fSisyAmTjExqLzXzvZqUhI17MyCO38dAODq6upVEu9zMG5Uqv9anwgxHYygeGWm7Rjr9
gYMKQ/rAmbnaWbVC0DTl+bvycwLuBJKQ9InmRRlpLlzz9MtEUy/6FtEH2E15WQCld2HcWdN8Q1vm
nAxTZaAPUOFqERvFaHelur9QkOiDIyzfRBmZHQxgcNGHgdXXqWjoOS0eu5KbSG1KoUPSgOaqTps4
1saLXoQ8O5D085hNKcTno7Jw2jLn4FkH0vxF5truvF7L/o9BKNwC1wwGaNLJcXXb/e4KsUFYeJRc
OyGJffqbgXPe5x7ZOR20emAbYZ1iMAOSkSSERjsQHbR2iGTxQ2dF73VcqCZJvOGujIxF3C1muAHi
D+T3rP5ydXgZO+N5WMIUIvKyhSOvKlPqBWdn9zfLdk33AS8/2GfKyk0ZpyjarJ+87+FXBrf+sJzp
goHEnpsrCrYfHseLREaybx4zE6jzEPWe6tETeSpIuflgbkAUaS54UkfTHoK840aSb4i1elYgJ72E
ychclZEOVMzIjqadLdN0eDPXzpLRFWVBvLD1FbR3dqPWeB13UDtqZp0rw4MbNmDX/gO46a1vhD+m
uxOYAwBJRi3gx+/+9HeMHV2Pay45H9GeUMbr/GmRwK0ANv4kwRGzDdihcASRWAyjKyrNv5vhXnQV
/dokEI2OpKW1b/Lf3ql2HamEtO/tlid3y7pDITOCdl1NlbGuiaO1vd28jtG2eS+VRs0MfkOkR992
LPN8zLQF+eFgMgiBGxk5+3S1iOYkIBErfDrmrgMmzHXfnaV5AAnUfJWRdEYfKB/Yd0nmuSkgmM70
xYsZMMjDrje/G4sWp4KbQVTyuK/XoEfDjZgqNk6GfBOCMX/QNyTJlVVv9EZE2slHEitHd/Spc3im
b9krPuNMRnJBnCjSZirVPN0ufiNXXaMWmdn+no+/yFxBkoCbXgMNAlTQyZ8xjswgUbscePWx4tbl
4db/sj6vuBI4693eiEg7+cgzCRazjWxVZwaAYjtxIiNp+pnN3yOVMG5qGNOkuAqDrggpdJ8X9mC6
y77LDCSRx7OagbpcXBqwb2BaonkoGy3ipBBgH8Wo2if2KvVjJnBDfeoyRdwdeUUpqXjtWAeyjwEV
2ZfmE1V9oOCcnocbGUnrqKlLlQ/gYvgLZBvl5oybIMFOoObTJqLhgfuNH6x267VtD/a9hiLvvPqp
NDdTwsUxpTZN00+yxYyDq5vM0bTdKs5w9xfpqo5zemDnTIjFY5g9bRJ6erqxbccurD/1FGNQcRjc
6J8xGMTRpib87/dvw9mnr8KKBXMR7ylsB6yZ85dyvLRzN776g5/io+99B/yBIKJ6/7RRPakUkHra
58pnpBpzE+gz0+4yzcsry8pMklB9TTeD15BwJKl5orml9/rmZrUzTx+Q9ijVNPP2G9/v6uo2Cci6
mkpEY1Hzu/xtXm+pRk2z7qTZNgPY8DecOZt8zLST1wkhmR8OJFWGJBqdQH8xptP9l1UAl0KCjuGX
XJxdXWPH0Z0qamm+rhOouggMMEI4J9BuZkxWwBL7/UPd3sy7920GDr9cnAlf497sKgFPvmJClEYP
f4XfoPvYOUny7WQjQAYzjdw0XPUGYPW1zgFOOFi3HzUG0aNJMmWL6qd5DNRpv5d55EDyjH7Umlz8
RlJ57wRGuj2+Z+CmlF7rP/Of5pVexpnBwuQlSjm6a4M3/81DUdcHu3/hpHH2WmDdDYoAcWonnLu0
HlLzgv0vKIUt2wl9QqcTHfnkk9eow71mfD0oSXgpR5pfu20MkHilD2xu6A50nlLpISAECWCaEudT
/6IFiLycMj/bouZojNiebYFDFSSDkVHp6MVE2+zntw7NmHkiSUa6gQQ0RQnbHlTpLSQ4nyYRSRLX
DSQhT+wzyjTP/tLafBBl5PDIO5a3lzLnRsGeZ4tjbbBnk0rDcFK/u8VecaBiRm40bS/W117UkGmT
p1AogqXzZ6GlrR0PPPkMzli3xhhsucupZZnj6IiHI7j8/7N3JnBylOeZf6u6Z3pOaTS6R0hIHEKA
BBIgxCEQYC5jwBAcYzuOjR07iX/x7trJXtms1971bhLHsTd2HMdeX8EnxuY2NxYgBBI6EQKB0H2N
rtHcV890d20931fVXd3TXdU90z3To3n+UOqePqrrru97vud93xuukZ/8+lH5+3/9iXzn774kDZUV
khgYLMpxaKjrb4W09fXLN3/wU5nWOEX+8PabJQ6R1BhaYEI7IEOp2kaGocKpK8ywhENmaq6u07Gr
W4mR9ZEax61oKbEQod41Th5IuETdz6OaNphUXWPPxbR/LyUu4vs9vX1KkMTnEa7d3t6h5jWpqkbN
QhfYMZQ4qfooHV1KHFUCatBJU4gzMttxQYYPnDZozKPhFCSwLbtDZOfLOsdMsSpGooN45qXaGVmV
R+L//ZuDQ8XzOS7cMO3hgATbQblLBrI4I1Xlwn49YucXrv3eKyKrv2d30k+cHscYz9PTY7tZ42DZ
y3kZ6xpFLv6AvxiG+z5y4r72M5Etj2sHSCmc6MXcvnBonnfN8PM54ft9HaXfP9j+KICiHF1lAjr4
83IUson26dxoI63gicG7TKGznK/JkXp7P12lQ/v9zhOIElvtc2T9A9pV5ueeG2lexWiehT4wyAn3
Mwo7FdIbQA5TtEncKsFYF4hwsWjxrmP5fs4txJPPsYvCJsPK3Wc43w84tiGK9neObJ3iA8UV+lv2
acH7ovfndnbCBQk3JK6JcGLP9qmijTYh5oe2+FiA/YdrD4TfoAIh8+22+qJVuthYtLtIC2Bo9/PC
lf7OZRfk2D25d3TPiVK0Q6wJMK9ibjucwzhG0R7yC9fGAMDz3x7dqvSnQz8jZ85IIw9hJqgyzrjb
Ivmoj0EbxX0vFT6QiMdk2tTJMm/WVFm76Q3p7elTFaPj8dw23tjAgMycNlX++xf+TP7sP/9P+eFP
H5TPfuLDWpCMxVQBmOECl6MZCktnbFDu/9XD8sLa9fLdv/2SzJo+VQa6szcCVM5IVVBHuyERkh23
Ekq3NJxFidrL3Av3pv1aa5vOqQdnZMJ+ErWX2XJylkUc0Qmh1/g8Xm93wrSrwpUyaG+vqHJwGer/
iL2s0YGYdHX3OuHafapYTkgtU0j67ecx+wIxEB9UYeCq/dvVrat5Z+a5dHYPigpVVlSobZHbGRl0
8NMZOWKQN/KtF3Rlz6CGABpXcCu0HrE7zLuLY4PHb6KIA0K0g0Kf0TB950X74GoZ+X5H5w+V+8yd
hVUIhwsZDadIrf/nICj0dacvJyoqQ1wYuNT/+1POsBuF1eXrdivlQMDpmvtwIm238dAWGYtlPOdq
u5M6379YTccxkWe+qfPz5lPcQYzRO/ZybbOgvJFBZMsXWYpz9NxrRabOHfsiYpl4C9l4B6EhTqz5
ceF5RTOBMIYwUGucXF/gYlROWx8nGcTr1x8U+f13Rdqb8zxPjOGvK6JB1Da0/Nspk5v0dKoAMbKq
TuSqPxZZ/iHt6sFxABEaz7FuqgCL3QnvPuWcJ4nS7kdVnKY9eNAUghum9mGIkUgLhGthkBgJB9zJ
A8W7BxcDROVAPITYgUH0bODYhRsSRRlRRRvXHT9x7eCbI089NFzg9Nq/ReTwWyJnXe7/WURILb1T
pPlduy3+UnEGyjBIhIgB5PINujbjPDiwVf9+uaewsDivos4X10FcD2FG8cv5jKgTpOGaqNoAnZHF
6qy5IpOV5W/vJBmvO591Kz6nl52W2GBcbr/pavn1s9+Unbv3ytLzz5V4r3+o9mBvr9x63Ur5i099
TL72zz+QeCIuf/zhu6Rpcr2YUADtm7X+qeCj3jCcsjCmqQS4w+2d8utHfid/Z8/3v/zFn8jtN1wj
gz29Oc8f03E1Yi7HOtpkd8tR6e7Xy3+qR3daXl632V5PXTVw3ZbtyfdWv7tNFZkBcCq2Op9/beMb
0jipXgmbR5p1WMuuE81q+SBIQvzsiUYlZq/nQDQmT65eK3sOHpZjJ1pVQRvkYXl9/06przqo8mlW
hyvs7+uGSfOxk/LA489JTVVkiOgLcbK6ukrOntski84+U+pqqjNOhFz737tvKUQWja1PiFx8m92Z
nBHsjrzsHp3Ee/0vdSN0JJX/0Hm99lMi560MHpEFO1br8JjBIoRA4WaGkW2MorUdKWyZkXcsKK8N
wtmzhTohnAwjyn5i5PT5zvwLyMeEGzC2IVwAEJjxG6NZlfF0E9S43U7/fTnay7jgsmBXHq5xO1/J
U4gUfR0ZzaTuWZ2Rb+sOQpBQkw1co9AJzlaZt5j7B0nnF+cRog0nWndrYQNUQfeZyoD8lCh4MT9L
IRuIiAU57Epw7I9FBAq2ByY/IGBvfzZPIVJ0KpiKyPC3C0RAtHcghvjdu2fayz3rHB0mmK9o6BYy
yuagw3mFYwBOtNcf0OuczeWazz5yC0AECUhYV4iAiICp87leQURfeI0+//O9XunekH0tXK6FvKAc
4VhvTMXoWxYTtO8gSJ61PPf1F9FGi2+2H30KM+KaiZBn5MwdSxBx9N5anRMyqC2O6vZXfkyL8+gL
jCRKCqL00g+IXHqXdhUHgXsF8usWq5CmVQbH0kRpdxZj2+EajMlPjEQ/Vt3nC+g/IUdx9WR9zS7E
lX467ce8qmkbMgGckaUFTscVFy+SqrApv39tgyxbvCjwUFXux0RCbr32SvnGd38iP/3NY3KipVXu
+cBNsvCs+dJYXaUcfgn3ppLrxgs3o/1LqEJ9qqdXdu7ZLw/+7ll58vnV0tfXJ3fdfL0Y9u+gwrWR
ozEPZySKyRxsPSE/WfeCvHl4rxhh5yZofycSicgvH31KHnjsGb3s9kmF1/a1nZB9G1YP7cPY7z21
eq089/Jraj3x23jt1f3vqCl9FQy1XN/+8a8kZBpqPcQyxAqF5OE312edd/Pxk/LXf/dt9b0hYq0K
Q0/IWfPOkC985o/kQ++/XiKVFRQwxgrk/XrjKd0QDnJHwtVz6xd1biQIkhi9jxc4OorR9oZZItd8
SmTlJ+0by4zg70DY2/SwvaxHi7fPEXa+zV7vjhP5dT6x3BfcqLeRX6cbxztEx/7uocsKMRWNfL9O
MfINwR2CEfN8ck9huZZ90O7QLtPzhrsKzlU4KRAC5IZ+uUn4i5HMfTzk2SnWjXqsRpLLbbsVGr5j
jdH+KtdlxDkfJIgg/CzbdSPXeY/CMJGa0TlGcm0zN2/kvIsLD9VGvsiT+0aWYy+fcxTuJBSKCXK0
o3O98bfFy4t81ce18OK3391CNmfkKGQzHjueIyGfXILYP5jyOk8M3cbIt4J6tnnCDYfcehi49Ms/
iYgLpJ1BtEnH8eDfwr537/fZUIVinHDmbU+PLE8eBDFMQbnUlPNvu85bjdDZXGC5ILbt26wjVvIt
7FA/VeT864PzA6KtgvDh9qPl5YwE2LcQI/GYq82MgjAY8PYbjMCgMRyWI60MPVK620TeXaP3d5A7
EscsikuhY4t0QtgOhV6/DSdMH0IkIqMwwB8Ejoeda/XxNl7dfZzXyOaLnPeYcC/PBVJe4Hh6+4X8
RGvDGRzBsYjBUfQxT+3X7RrXlZ7sQ/UVb6BytO7Vfjqh5f/dCeqM9GwprwMyuREtH5dkDsekh5jd
Aa+aMknev+pyefip38vnPv6HUqlCtQPcQ/b3BgYGZfrUBvmrP/+EvPzaRvn77/xArrjkYll+0YWy
YE6TTJoyWSKRSgm77kfPfo3ZyzEwMCDtrW2y91CzrNu6XV56bb00Ta2XL9x3t/z9vz4g/dGo+h3D
R+CAoxFvP7h5rWw+uFvOWbhQFi5ahEyQYrq/anmOJmdeEAIT6lOpj4SUQGp4tnv2z7s6uOmGani3
qfN5iJ5evRxbwPTMK/3o1tvHDJvSdqpVtmzeJF/+5vflokXnyJKFC3I7I/0mUhyUO/L9+bkjMYp0
878XqZuiBUKMjPe15ydyoVENJ8AV94pc/uH8RkOxn3FjKZYr0gUhJ5d8UDcEIQL4OQlxDsw4y17u
j+jvBXWUEGIXzVJ9EyEmbYe1gyLXiDoaaVd8VIeioHJ40HGObYj1QC4fbwgoXCNKKDighU04rvZu
GLtwIEImMnBFBjmBIOblG0aMAZ18XNrIGV2oY7FQDjl5IydXFf693o7Sb/uLbtW5foPAfea1X+Qn
JOUDrvEIZW2c6/857EcIkntGoZBNuVNVl98xHcpzABttDgy0BrliXedgLiCMYZAPRXVynU84d3Ee
HLTbKpsf0alZ/Gg8Q+fHDCog6BawGgmGkf914NhOJwz5Cv9tMm+pjqo5vkcLtUGuSzjhMAi85OZg
xzBccAgfLtfz4aCzT3KJkVg/OJ79QBsPwm85rCPckWgjzlkcPMCFdUObEzkz196vBcLOPAf1MSCE
432JfU2++o/882l6+wDY1ipnfZuQCQqESPSJBm/OPfCJe8eF79PFZt58OjhCDLUKzrvWPhY/kX5N
cl3pmFBgD273917VZo8JwgQtYJNvtZqgyZBs+SV1jkdD7rx+hTz4zFp5fet2uf7KyyTe05vHddBS
xVhWXnaRcvE99NTv5aX1W+TVDVtk7pzZKtdjY8Nkqaup0aHUziIM2t/p7u2V5qPHZf+Ro3L06FGZ
PW2yfOSWK+Xjd7xPjrS0yv/5l1/klX8SVbDbe7pl++F9ahX/+n98Re6664MSjUnZinIIx4YYqwvu
4MDWeXsqK0PS3Nwsn/jIh2Xbli2ybvObsmTh/CzHgkh+1YvIiIFwteG3upGg8jeaAY0R+0Zw3Wf1
RXzdL+1O1Ot6BBuj7miQQojDiYAiMeg0oBGKzjgat7jozz7PP3eaF7gv0UEsJJw6Xy7/Q5GuUzoE
CoJdtsYUlhOVE2/5D3aHcWnwcr/1nH0DO5w9TAs3uF3r9Mien1MDjoNdr+qOOiqD5rqhIjcRGvez
Fw5dLoimmBAeChEXwiRu0EGX4Xwu1afLLadY6zmRtlsQk6brELVSVS3GOQSxaCThYWOxjKqKfcBB
AHchlg2OQb8wTwxYIFRuzvnB1yMUmQhVlvYYRocaefwmF7g93XyRpTyn0GGGQORXwRwg1BTOGzjK
iwXC7rGflJve9N+fuQrZjNX1b6yuWxjUDApxhsCLQU2IOX4CmOqY3qideEHiF0QSP+csfgvtnHOv
1u2ZXMDleM19+nzf/pw+lzM3IkRLFLpB++OiW/wHKXDvVgVOduXYXvH8UrK4xXW8Yg6WA1PmPHDt
OrhNd7yRw9pPlEKuSxzbr/5cCwUDWfpUeB8D3UtvE1n1mWABynXBQSAr12MYxwMGl8+/Lnd+U7+B
pYSTe/JwmRTawHGBwRgMiuB6GST245hdcosuNLXlCZ1CAFW5MZ9Yv3bx4txEHwCDBzgXEfaPgRcc
93BhBp2TLl0ndfTW3o1j2x6bCEVnynnbwUmMcwZ9tTkX5P4c+leX2P2iE7tFju/N3VZEuwhpBzAg
lHksuq50zAuDBXh/z4bTS3LLJrkMESML0d5E/MOODKFuA/r6Vaj2efOb5JePPS3XXLVcFYNJ+Dm6
nJFEOCj7o4MSCYfkY3feLLffsFJ27N4nm7a9Izt27ZV33tvtOAitZDVsEzci+/mLr22QFUvPk69+
8ROyaM4smTW90e4/hOS9A83JNJdBwDWpC9/oBi3m3Xb8mMTLddeieE5NjdTN1G4Ey77xdh09qors
VNjrEY32S0VFhR6sNY3inFBkZKz/tcj0BSLXflp3iPMBouIf/E8tZmJ0FI0zVGJEowTHP+aDXBxo
sCC/DsSxUAHjLWjYIBQEN4HBaPGPCbg8EXYOaz+qciJXEtwMECXRiMII8bR5Ijd9XjsPg/LpwMqv
QrRO5l4OvA+nDsTZXI1VbKNbvqAri6KYBUbmBno8TmZTd65xI73+T/07DACuUozq9XYWZ7uV4rOj
Ob5QzGWaKNst39/AsQ0BvFThLEit8NKPshdOKOdlhMiFRq1fJ+/8G0QW253wrlZnECIxtAMIhx8a
2ujU5+P2U9cYw3/bjPS4HE7eSG++yJEWV/H7PvLa4b4WdN/BPQbX/1gRq5fDdY97IjrgfgIWQA6+
M7MUshnLc3ks2lkQhTH5CRVwby27XeToe9qtmHkeY1/j/ghRBfdHDCIGNrJNPeVaV4To7X5dux4x
COvnjkSoKwY6GudpgQeDtG5EAtYLwhyuQRBlgiItIEIe9AmFjfZmFwAzwTJdcqfIG0/q9C0VznJY
cZ2eAFXXvezbogdO8Z1wxF/khPiKwn4YmMY+gWiA5cX2rKrV+wKRNys+HLy+EKIPbBN592UdPjxW
x3wQWL+DjkjsFzaaU2Br0d9va5ay4b3X7GPiZ/Y+mq0F43yu5difN/yZ3rcQitAPgJjd3aL7Ajg+
IOogsgjHIB7zFSHdNjUitzY/5t9+LcW9o1yOt3Kc11htu4Pb9SAFTDO5BnGSqQTs68/an+p2BlJ9
uQMuOK7R90O/FKnC0I/yvY/v167hU4ek7PEL087cbwH7cII6I3X7C8KgciJaugazpUZJtbNR/Wel
T/g8RLq01yW9qExSs7U/W1tVKffetkr+4cePyu7d+2TRgnkSRQXqXIRC0tHdo4qwNNTXJudbX1st
Ky6+QE2WZUjfQFR6evtlEA1Z5wcjlZUyqa5GbvzY5+WmlZfK+66/QgaOtUhvT2+qaItH8MwmhLrv
IBx61qQpsqRpvqzZ/ZZ89Ut/I8svX54WmV1uJ8TsuXPlL/7dF2RaQ73sO3BYvv/df5b2tlYJV4Sl
+cgR2bxhg5x5RpNcuWyxs+/cr1rJvzP3t2T+TYoHGvS//552Z6ABWlWX/3fRIFnWpF16xWzsbXzY
boQ8XtrQDHRcrvojnVBdVUl8R7t84FxEMZkFl2qxL6gzi+MReXfQwPQLJ4c78a3ndTVJvzB1/P5t
/1E3dCFuILcabqhorKNji47Winu1S8Sv0YjtiMqjcGuWY6N+wtzgJsh64rjNNz/bcICbLh+nX7kt
46G3tEvLz32Fa8z7/lyHRsJV1dOqE6lDwITDD6IarrHIb5RvlWU0ukMlbla2DyNvpJsvspipN7Jt
zwtu0KJL4LX75aGCTDHA4BP2e5AYOdMpZPPW88F5/UbzmjXa1y0cR5j89hk6mwjzhPsKg4j4vCo4
YOh2S+Mc7YZEYQyIH/mA4zbo2EXoMu7xEJeDUszgvvz+vxS58qM6bQtEU4DQbAg9WK6gtA04N/Zu
8nfPoYMNcRHtN7+BDiwPBjhxPkAsQpsNxVUglj/+t0OPfRT32/SI7vTjvPZz9mI9FtvH+LlX2Pvi
sHb3or2B17GeWN98XdMQ55D+B8JvuR/D2C+41qPwS1A00ZDvbtdTOaHcvM/q8wcD8PkMdrngfoQB
e0zFAoN3GESHUaIQx7g1Dq6H491lOVbbDsfB9ud1nscmH4c12ksQyOFU3/yoE4XRrq+TMJngmrb8
Hvuee6m/gxnHIITIYl2PyrE/kmO/hLMWrcncoZbP++N2y1hOu1A/t1SoRsh5tDw5CPV7EAGxobyv
Z7OI1lRXyfHjg6pqtDU4KHdef4X80/2PyC8ff0a+8lefs4/DkH0Njmdp75iqkvS6LdukadZ0aZxU
m3UDG4YlNZEKNWXtC9ivd3X1iPRHZcAZdccyV4RDEg6HpQOh4qY5RIjET3X19CQFuki4Qm5fcrls
PrRL9u7ZLS1HmqXS/n45inJYokq7I7DSbgBdcM45sv71dfLYL36hCuWAzv5eJSR/+t4P2u+fKbk9
w0MPdr3v9URhpMigQfrst/TIJfJuoCNb6nxj2cBNY6fdCFn9fbtRe2R09jMazZjQgRkOGD176Yfa
FRq0vK/9St9MF13r3yFBZxqhTZhQJRv5SxKDWsjMpwI5rg0QP99dW9xR5fHujBwrEXEiOCPHcr+U
8zKiU3X5PbpT7tf4hUhw53/T4X9w6iFEDUJW0wU6lDeoCEsmCI2DMFqsIhA5Q7ULzBvp5ou0Sniu
NJ6p3TjomPiBbbxrvS4AVuxjCPM9vksLyX7XereQDQaf3l1T/udaqWjeqY+NuYv9HXkQP67+uHY4
o6MJcRvt6Fnn6m1YaMoAtHUw+a0rnHpwaMEFuPzu4Hsw2lFuu6JQ0GmGOxFOxqACJ2i3YZrSlJ9g
5MUtbJM5f/SJ3l6tB6fh8gyatzsvCARNi4a37zHovO4BPQhd7NzWpTiGsV8w+IxCNX6Vx7MJHId3
iBzdVX73LLQTX39IF5JCTkecR4UKrcUAjl+kCljzb1oIssbZtY0FbEo3X7Sl3nxGD+z4mWZwT4WZ
BBPOOeQ1hdEE17N86xUgH+47L48PV2S2bZevMzJL225COiMtOB8THtEpR1Ga5OdC6UVOlDgFnSuz
MIvNRYvOlt+vXafCos+bN1uaZjTKfXffJD9+9En54M3Xy5KFZ6twbRUShQnzsP9GKPXWN3fI48+9
KJ+9904JI0R6GMLfkkXnyJa390hbW6dUV1ZKPBaTeCIus6ZNkTObptvL9rpcffkyMVEdGw0A+/dD
lRVytPmYvLFjpz6nnKrUsyc3Sl2kRrr6++Xacy+UMxtnSnRI8mPDjRT3HF2Z8fzZP1PM7zVW18mA
vd473j0gdQP98pFLV0nvYFSFnD+5fYM0d7TKJYvPg5yccSL4FbCR1OtUIksDRnsf+rJuGMKBAweR
OYqNEYzab3lc5LnvaOeMlSj+b0DsREchHCnO/LCtfl9AODlC8V6538lJsiTYIaE6NlW6o5X3RdXS
neAXHYG0GA2LiZIvstjbhJeq8SmMFHMZ0bGCsIAqqw0BjhMMQmCgIp9zXDmiwrk7jHCYuSkhcuWW
K8YxfLDAvJF++SKLtVwolJHP8sAVqar2luBe4+aihAMD4Y9+nOEUstld4kI2VhmfbxjUe/NZ7RKF
qOg3GIpjGtvsjAuDzxPkr1Nt+xxdLAjWaOugTRDzuYcjVyCcWlPn6hzY4crib4OEEzr98o9FdrwY
nBMSA7bIqZ2PYJgJBjqqc7h2IQgiMgU5TyH8or1SqsFptMngxITTNd8CUmOd9xT7BWIkHLMYiMkX
uEbxvXItxoJB7xf+VV+fr/mEjhDKt2BUUY6FDj0ggzb1e2vzy4k6Gm2Jcs2zOx7aYcXcdm4fEQN8
i2/Mb4AW12mIl3JG/v0ntAk2PqSNMafz/vN1RnrzQYqI72vWBDsJfI+fVJi2W536uiuWyQ9+9ah8
/8Gn5d9/8m4VNvyR21bJs69ukf/41X+U//y5T8niJedLQ0WFqoiNkPCOeEz27j0g3/j+/XLuvDly
z63XDXuZ7r39Rvnsf/1b+fnjq+XuW1dKvWmqHJRWZYUsmDNTfv7QE7Lqikvk4iUXSp29yLjsnmjr
lR/f/4Ds2LVPt7lQpdr+Xsy+KLvuwivPOl+umL9IujOq9qrclY54mXCqdLsVrhOOwxSfMRwFMeE0
wHN/z3CqZmf5HlJEmfq11Pck+bn+wUGJW3Gpr6iTG89fqg5QBJ+v3/euEiMHB2P++zIjJHuIC5Sd
/NKApL+//bLOfXjZB/MLKRop9jmnGtRrf2Y3wn9SvIqm2UDn0K12iGqbI2lgY7QNNyw02gvJcbTx
Ed3Au/nzOsynmNvXFSKf+JrdsXtO5+4p5k1svI1Sl8MyTbTtVup9Yo3DZXzlZzo8CPnT8nE2B3WE
ka8MnXgkc8/l/oPbC86A/W+MvDiL33bHIFZ3nnkjVfGGgHyRIxXMkKvuguuCHRC477z7in0dbynd
MbXjZZHLP6zDHv22jbeQzfE95XUsjybvrNEFptB5DCo8FLjsCR36i7YFXMdTc1Q2R3sAjj6EMyPv
oR/IpYg2CsK6MZhYSA68fO7dcNwh5+zWJ3UoehDIKX1st27P+LmuswExElOufQxH0Cs/1cuF9D1T
zyiuMIX5wpmM9tOLPxA58u74OoaR1ufAmzrvXD5tOKyvqsS9vbzvYWh/Y3+gfbvq01rwLyR103Dv
aXA4b3taZPX/09tpvF7b6Iws7Xx3b7Dvpd/R17sLri88YiToHIUQCcMIrn2l7IuWetv5OSP9XpcJ
Xk07FaLtik9DQ7S9W8wSZYcUvzDtxsl18jef/5T8zde/K0dP/khuvuoSmTGtQRadPU9+9Jtn5Mu9
vXLdVcvl3HlzZerUKdLb2yfv7DkgT61eIyF7/r/+zv+RuprIsM+8yy48V/7sY3fL9371iLy375Bc
cfEiJfJteWePbN6xR2bOXSBf+dYP5KarL5fFC8+SHvv312zYKg/97jmZPLlB+vv6lBBpZjZi8XfI
EMvjiAiFTGnr7pLWni6Z0zhdIuGwyr95uP2UWvymKVPVvKKxQTnS1iINNfXSWFuntmFbr/09+7tN
U6ZJVYVubBy2PwNxdk7jNCUwIsz8cOtJmVxTK1PrJ4thz7u9r1dOdrbLGY34XqXaV80dbTJoN/Ln
2PMKGyFt4LAXIGT/dtLsmuUMsLLua+eYkISwivYoglHbJ79uN8zf0bk35jmhT8UeIUVnEBd7OAHW
/UrkjadHljMrn8MDnQ2Igas+pRPho8NaqPvTvWFBPEWjrf1Y4cu6/kG9vKvu00n2ixEWD0cN8qr8
7h91BUI4c8ZDZ5andflvN+s02WZjBUIpX/o37cBCQa/hihhI6o9O8NP/V4st93zFPxQZjfUtvxPp
bi3dBmpz8kaemUfeSHQ4VVGuEuaLxPZFxeUggQDLDKG2lNdJuOmQRL/pvOBOE5yREJUwIFiqfVXu
5zFyI+PeBefLpXdq595w7ovIpXhyv8irv9DCxnV/kluMBBgUhLiI8Fm/jYTjFuHaWM4b/lQ7JHH+
jfjeHdU5F9fcr9sn+YYqI4IEA6wLr7LXb15hy4HlDkpjgOMXA5t4XPnHOoQ+6Dv5gO0Il+Drv9Ht
qPESCpl5LUPeTaxHPuH4KEQIIVKd32UOjj/sG6QLueqjupJ8Y9PIB9IygQiJ/gYGYJAfHWHicEiP
TE4o7+tgvsURrTKcV7ncQzAo5F5HEEmi+nGhER6LMd2WWftznSKgnApMlaodkNMZKZJ/JW3vgTOu
q2anwrNVGLaVkTPS87oSplDoRlvwdJEb00iF8hrifD4VubTy0gvlsx+9S7741W9LS6+lcjXW1tTI
tGnT5NLFC6Wvp1u+9I//ImfMnSszZ86QqVOnSU19gyyYUS9zZ00bUXVDLObnPvZBeWPHe/LbFzbK
rhPapRSNDkrzyVb5yle+Js8+86z8w3d+KMuWLZVJk+qlsXGazJgxQw4dOaJ+O2SfYMp96Jlvjb38
kybZDYKKlH5dUxmRh7a+Ji/t3CZ/9f4/lBVnLZKTXe3yo9eeV9vlS3d+XGY3TJV1u3fIt1Y/Ltcs
XCJ/ev0H1Cb73Y6N8tz2TfL5G++SVYsukpauLvnphhelN9ovX73nPpk1uVG27N8l//zSE7Li7Avk
czfeIRX2cj219jl5atsG+Ysb71Tfa7O35c9eeEQ6errkf9z9SZk1qUEG4toB6VYcD4VCnt1ueTav
NWRfZ4Zq65D8hFPciHpFSUGewvW/Fdn+e53v7NI7dKhw3TTdkR5J4xs3EHSO4e7Z8oQeGYcoWYpQ
uVyd58f/Xjcml31AJ2qvyDNsGx1XOBEgnq57UM9juECQhBB77X0i51+rOxPozBe6beGQhjiKeeEm
ijwnhTgiS5WjsBxDAgtplFncbmUnYOTaluNhGRF2ibDqlR8XOWeFdsvlW2AGKSDg8EIeQtc5AnGr
tVlfv3I1xDHQgTx3uGZlC/8t1jGM5VmUR97IgwH5IgvdxpnzUQVObsmvAMOOl7RIXMpjJzaoHern
rQwWLNxCNm+WSSGbsRr/PfS2yAvf04IIQvEgIuYr3iN1AfbpgTdEXv2lLiIEsP0h+OVKzwJXJIrT
RJ4LFqfhWNz2rG6zIIQZ9258fzgOHSwv2kI4L5BPetszWujM+/txXdQBhUeQ5w/h2vkOGmObVmKZ
Tf+2F1zM2JbIdXjNH2vhE4PTcFWaBXpoIBJ3nBDZv1WLXchN2dc5fo9hpKjAvoN4HtRugwgJF3kp
B2KKCY5z5BzHgA0Enys+rO8nk2foY30k4g/uRbjGnTxgX4ftY2DDw1rwLlVY9mi2s+iMHJ3PvrfO
bhPZ/Z4VHxK55A7dDqquLzzPKe4LuGdAEEdfdNOj48sRmWvb0Rk5jG2YFo6bei3zMa1Sdtrr6fNy
Q4e1IGjIheeeJbNnzZS//OJfyvRZs6XSvob++ec+Lzdfs0I+cN0KefrF1+T2D9wmd//Bh2T+nJny
T//yPXlrwytFO0LOnjdbll60RL7y5S9JqLJKWltOyL0f+ajse2aNnBnT4uhnPvMZuWTZJTJrxlT5
5H2flt27dQW+sCNGelfSMHXotuk4ugxnPd84tEf2txyXA/a06ryLVH7Jzfvfk3BFhbT0dMqipnmy
5+RR2ddyTOqqq9X3Efr95qG96nt77fduu/gK9fjWkf3S1dcr7X09smD6bDnU1qK+W19doxyTlZEK
2WZ/78Cp47LreLPcvOQy6RsclM0HdklftF+Od7bJ/OkzJdbvCQV3llNvlWxVtK0sx4awgvZYglFL
5B6EWwEdg4VX252qBTppN0LL0LiPVOtCCdkaY2h0oCM90Ks7oZgwmo9ONRre6GCPZgPEK0g+9ne6
YiXEAQityQZ2aKgQgA4DQor2btZhWnC7FCO314FtIg/8tcjFt+o8nbPO1rnelGuhPnvHAuIjOjFo
1GL/ICfd5ie02DGchj1uxHBb+d2AVdXSAtcXywfBOYhihpIXY13h3Mon/+dE2W75Lk+p8duW42EZ
AYQDXHOuvFfk0g9qEQHXHAgDaiDCHNph6zqlHd0bHtLiinuO432c88gp6yeE4LoGR0u25crnGIbz
Ox7zX+99m/W1cWpAXiaE4QblS+vr0gMrEC4KPUexDeEyh6MnKF8uEuF3tpT+mEDS/V2v5+d2g5sT
glKpxEhcMyCKVE8e2XFcaiDwPPS/dBg9nFlzztf3RISLYuDQK4LB0YJjBueJyjv5nB7k9LrtcGzi
2PPLI4ptD4dNvk5ZiDRH7ON04ZW6QwxnJXK01k3JLdagHYvjGucwiiZhGbGOWN5j7w2/LfPij7TI
p1LrnK3bZ6gcm9kxx2/jOMT2wrmP72JAJGhfo42GcxxFhubZ67nkJpGzLtMDqLUNTkXyyND2CtYX
bT+c864D7o1ndOX4kXT4248Hh/KOxjGsBMYdIhfd4i+YQ+yFcHno7fHXB8DxgvY/3Gjn2sf6hTdo
pzdc/tj3ONbd/Z9NCML5qfoAffq4w7UNuU5xPOF+BoG2WPsJwnlQOwD7rNC2E5YPx1PQMdd+vDjL
qNKwdJbfvMZ622UC9/sz39a5HS+7S0dnqH5cg3OvyGLugPg46Ezoj+K6i3sG8hWPR4f2SITLgqpp
+1XR9n7eS76vlYkQmXqeHpqdWV07ezVt8bxuOgVVkL/QTK5wXW21DESjMv/MebL44qXSeuKo+kx/
f79y2U1rnCxnNM2WpUsvFquvWwYGBlSIs1Ukp9bUKQ0Sje6UCxcttNsp02Trpo32vT1h9y/2igmH
Zywu5513rlxs/37nqRMSHRiUCjHFXgoV3myIkVW8Ta6/I76annDThCPSQvwLJXM9pvJpQhxMCbYp
UVMcN6orHqr8314hVLk0dY7IpMCIfZHQHw458zcyRWZfO0v6Qa33pZU8HtJfZzXtMQEOnDU/1dOk
6TpX2YJL9HM4FyBMovGNBjD2/mCfLgqFBiganSpx93YtvsFNOBYCpGRcQ+Fa2Wo3st55RY/4XnST
DkNCoxJ5xzAyjE44cuegqh8ch7hZ5yNUFST22B2EjY/qado83eDD9m1aqDuN7nbF72J50NFGZwbb
FJ0shAqNRJiCKAyBxM9Rgf3Ydaqw8w439of/d7CrBaHlo3U+57Ou6IxCgLG43QpanlLjty3HwzK6
IL/i89+zO2Iv6nxc8xbrHHloRKNzh+sSzvOeVu0gggMg1zmOXJRIbxF0DGIAwxrmMYzrX5CbEddH
3COCtj/EDyyP37zQYf/NV/zd6rnOUdxXnv5WfscBzp/RcCkh//IjX3XCeQNcG1geFSVQomWBqP3k
N4NdfMO5bpVCBMEgG+5xSBVzxgXaPQpnVu1U3clExxLHAvINQizBZ7OJXBAiIaT5HRdIgVCoUxb7
663V2kEGdyQEurMu1S5Y/BbOKxzHOC4hBLqpaSDAQMxEB72rCII4OvKrfyiy/QXtAj3ncr086JBD
uI0PpH4bbRhsLxTdK7TzjX2C6xEmCLf4nfnL9LXLFQEgAKCNjvXFeuM33MEK/HYxqmUj9cSejWN/
DKsBow59HPgdW/gMQrSDqqOXM7hvob2MCdey2Xb7dP5SfZzBiY7zEoI+DArhCqe9at/Lot1aKMe1
H8cdXMulEopxTgW1A3CeF3qNxXH08v0imx4PuNbnMd98ljHf+8Boz2ust1020E/zXpNwDcZx6RpM
MNjipo/BNQnXePwWrru4/ua6Z4xXgTFbf1d8HrN8d2I6Iy2lnKU7IS1xwnVT0QOWE34NHdJyowoM
57uG5bzh0Wft1+EgBLWRSiVGtraeUjflaFSLCe5vNE6ul+aj9sEY65PBeHzoThwhTTOmycmWU3Kq
tU3qJk2SwcFB1ZAKV0WU0xC5IVtO2BfrxIAqcKMKyDgCZNgpEhOg6Kr5oeL2jEkN0lg3SeL2BkIF
b4Rmh0Mhqa+qkQG7kzPVfg+faWrQjTnMGd+bXt+g3huwGw/VlVUy0/5MbSSiwr/hnmyorVPfmzG5
Qed/xPca9PemT5qsitpE7BsQfq+nv0+tV9xPcMpmGfbs91T0vqX3cSJYzSejBC7mnS9rcS4TlbfI
1GHDsej4WB9V9fQVPbmgMwE3JES/0QofB2istmQ4etChQYMPN89SLI/anyeLvy4QWcvBrVaqdZ0o
260c9+N4XMYhwtBOPW18OP36iY4rrkn5nOcjPQaLdQwXc/v3O87I0+k4aDlYJve67uKIQaOJKkLT
rIVzFzdHWL4Dm7hvljIcGMIKjjtMCLd2gWiDDrHbiS/1ICycQpiQ90x1fqZoQRJCUrTI+x3b3hWn
kr3YSr2+2B6l7OBj3uUgIKDI0syztLvdD4hwGGQZq0H4YoNzCYNYmDLBuYlBdEQSlfKcG83z3HX3
FcM5V8xlLNd5lWrb5XNNwn3Ce6/AfcJ1xI/GNXi86G6SW08ZWk3bkzIvpzOy3PMnBW0Tz8p5nZBw
OWpnXCLNEQdXZHIS1yHpvq4dkTpU23TCgC2prq6QqqoK6ersTLPsus69KZPrpd1+Lz4Q87gQi6dG
NjbUS6c9/2h0IO336yojMrPWvmjHEtLR0a7fc95OiO6IQEg08jiuUG377ktXyvlN82TxGfOldyAq
k6pr5HM33KHeh5DY0dsjS+edLZ+85mZZOHOuEgshdN6x9EpZMG2WLJt/rnT29cqkmlq5z/4MhFkI
lD3Rfjl/9jy5b+UtsmDGbN2mHRiQDyxdIXMbp8vyBQvt3+uXmkhEPrvq/fbzAVXAJgrRNfeOFydA
O7kWluc11x2ZVsjG6wilIFmelEunK+iECTp+yinJOJxSx3bz2CKE109CyGiE1xcDhD72do7d70OE
7G4bvd+DS6llgoQ6or+GsFAUnvLLnwjxA65IhHNbE+TcHC/nJzn9gcGstfn0X8/hOCNzGLzCVp6/
kzYvr3g5TreglRGarSaIkGkhu85zMdIFSccqmRIknVDiZKi2SKSyQhom1UlrW7v6jYygZ2mcPEna
29skFotJKC2hfHHuHPXVVdLX3ydRexKnGA2WYVKkRqbW1kt1qEJOtXWosNbMkOxwlgI22YDrETkh
l8xboITCgcFBVYX7xgsvUb8GsTCeiCmB8kPLr5XBWFxV1sY6njtrjlxwxjz1vUH7Nfze9ecvU8vS
NxhV866rqpZ7ll+jRM9+iIz2hj57RpMSP6P4PXvb4XsojINwcYihCcsK2O+JtFyh3n2dEiAdETpD
lCaEEEIIIYSQUQUOwAuv1zk0/YBbC67I0yEUlBAybrHcf/J1RibdkBkmPa9L0vLOxDuzcVZZO+ly
c0J0k8Jjwvk7+ahzIKaHausQbZXF0MBndD5DyzSSodoqHNoMyaS6Omnt6FAhv+521ZWZLZk1faps
ePewEvBqK1K5k4qledVUR6QyHJLurq40ZyRCmxGOXRep1ssWS9mHE85OdKtpB4E1hmg4ENNuRFfA
hCiY/Iz9GkKue/r7k4eKZPke6Mv4HnJEwiGZ/J792mAspqa07w0OFHxSuEVqks/d40DtH+/+Tz3S
GUmGfTW2hMcPIYQQQggpDBQXRAXfi98fnJ/2wJt6YpuTEFLKvm2u/q54ikOLR0fM0R8OZ86vkALC
md+zjPFjmEy5Hs3Uc3tKqKIrCTWpvyFOmemuSFWURb3vbmTtjoTH0HTCuFEkZnJttbS3tnmSTbpF
VSyZOW2qtJx6UwYGY1JnpBTgYjnwqqsiqohOa0dn2k7Br6MIDBySrada1Pqlqk07B4VpimGchueN
uz8td1tbTtEdy3lP73sroV/HZ70TIYQQQgghhBQN5OnGhAIscSfdFCLtUAijfqrIBatEVn1SZPa5
/vNBJXEUBmneyW1KCBlbrKFPs3lzwnl83/f98Ri2rUQn00o54vB3QjwClOm8lvobn1d/wxVpOLIj
nJGm/q4KxdY6ZFLImzl9qhw/fkxtIMP72/bfyOnY3tGhnJFJMTCjivRIqKwIyySIkW26iqR396AY
TENNnRw7flzi8URygd1fDuEGeBqOqKntm1G4yBUjEwlJuiBT+91K7i88ElLwhZIQQgghhJBcNM7R
4dcwpLhFPUKVIg0zRRZeKbLkRpGpc4Pnc/gdkV3rR7+QCyGEZOsWW8F95nDyTU8hG2XOM90wVmNo
0kmfsOzx4JBMyweZzP0IR5ypw3Qt1w0XtyfDeW4/2iuVMFI1X1zRES5IiFnIl5hQ4do6ZLu+tlqO
trXZ2yMkhmk6m0//bmXYlO6eboljBCzkhkUXzxkZDpkqVBxFbFRAtekGSGsxsipcoYTKhLP8qki4
812EacM9aTr5L9U62s/xvZBpjpsTwl1+V+zFQ6pITeo4SHhCtBOJVI5I7H99XDjOSApPZCRXZx4/
hBBCCCHECxyPt/+lyNnLhz+PgT6R3RtEDmxne5MQUvp+beafGWkdrVx2yGxh2vn81nDcj+53yk2Y
1AKToYTIpNCYDMdNf255X1dipKHELa8YCZekmAjtdsK07Te6e/tlx+79cvHyq8UyjGSRGMPeKHAj
bntnjzTNmi1VkSqJewuqFMGBB3Ht4JHj0tbZLTOmTxdvhDFcfl3RPjnS1SrL514iobB9CAxG074P
DW8wHlOFY1xQBRuvufkaxwOmEXK2q96mg4OD0tHV42jpllTY647JckOznX2NHJfYRwzTJoQQQggh
hJSMvm6R/u6RdGxFDr8tsv0FkbZmbk9CyKiRVlMm47m35IaVw5gTdgVDb6GabEVsXDekW9BFAiJ5
yzly290wOh+kmSxmkgzJTgpQZtIhiUrtWoBMiZFJ+df+rmmZ2hlpaRfiq1veltfffFfuvOejsnHT
Rmk9eUq6e3uloqJCWtu75BePPy9Xrlwlu/fsFWvXbjly5IiaYzFEr31Hjsv//clvZMBeJvzexg3r
ZcfbO1Tl7s3Ne2T7iUOyp+uk/NHZZ8vmrVulq7NTOjpTlv7m9lPy1NubpKOvJ1kcZt3uHXKyq0NV
vx4vuI7IU1163V54dZMcPnIsqSKf2TRLrrrkAu0KTTj5QtNESC0cx+mMJL5X4BJ8lhBCCCGEnP70
dOhpuJ3a9qMiGx8X2bWBbU1CyOj3f60s1bM9kddWZmFsD2H3Opas9ixZKmtn+d2kiCnBEYjue+Ui
ThquM9JIuSAt5XxMhWTH43ElLpqG1wGZCtF2SsE428LQ7jpTC5KG/ffmt3fKWXObZPULz8qal56X
wcGYVIcNmT29UQ40n1Ai4dHD++WfvvkN9VvHT5yQyy48WwmfI+XZtZvk0edfkckNDfK1r39d7aye
3j614M/v364+E6mKyEO/fUgef+wxicXicvDgQamt1hXa9reflB+uf06vs70+eP3J7fYNbvt4PWP0
OvzysedSr9jrdcniRXLpheeqkHkIkfEMZ6R+jKupGPuFTOALNhuHhBBCCCEkk97O4ed57Dwp8vLP
RdY+INLdxm1JCCl9v1ZyF9TO+p6Vuyuc2xmZUYLbm0fSLcdiDYkXt1Q4sp8rEt8xjLEVKCMSl2hC
53fUodo6N6ShxEjtgjQdYVI5Ih0BEnJUmhjp5p403Erb+jnmc/eNV8vlS85TocGGk4ezpnaVnDNv
tgp1/t9f/LT09PQmd5dphuS8s+Yp4WukLDyzSe686Rrpj0YlHnPmN7laFp05K+1zAx6X4/yZF4kZ
CiX3o7uDUsV1xrGa4jhZ3RyRevUsWWRv71DIUCHoygWZQ4xMOBMFJVKMizchhBBCCCGKvi49FQJq
DkCIXP+wyJpfiLQyPJsQUvourJWtSrZHhbQci6TXDel9L1NTyu2MzHA9WlneExnqjMyM8hYr5SxM
6pye18aCqsSA9JuhVJ5AQ4fpQoCM23+YyhmJv+NafIw7RWnwfjyV/zElRpqOGOkU77H/nj97uiyY
MzNVPMXz+5FwRFYsXph12RAmPFKuXnq+cvzF4onxVOS8xKdO6gRwq2jXVkWSQqQrQrqipBYj42p/
qIrjSAxNSCadLSIth+wraST3Z3raReJ01hJCCCGEkAyQLxLuSDhXjIBCoeiPdJwUObZLZOuzIpue
EDl1iNuQEFJyrCyuyORr1lBx0lvMZkhuSYchzkhcBy3T87dnBt4Zqb8dt6R3YVzXY6bgmMstORZm
oRqJSptVJQnLLUxjKAFK5YKMi8RRXdp+YuKe4DojDee5aIekVnwNCUHcMrUnVIlcBlyV9iNq2th/
p4mRbrj3KCixFSHDnkIT/IRJl+4t8VZSt5RrFXvO64rMFCPVc/sx0tcpFp1tJJMNj4qxZ7N9suc+
16xDb9sNzR46IwkhhBBCSDoYsD66S4y3XhKpnmR34irtKWJPVfZ7MZHBfl1sFI8th8Ta/qLIW6vp
hiSEjC45YrO9QuMQ7dCbM1Ic/dBDmjMyGXIs6cpm0g3peRQjXaBUk5EK1U5b3jIIzfYyOdYjh8L1
YlpOjkgVku3kjIRLEnkCRYdqe/NEupOlhEhTQiFTbTMlSGJe9n+miXkk9LwlkSx4I+LJPWkYPJhH
43zxqIdeV6TlWIdVrlA8Wok0d6RbSdsbql3Z38kNSobyzlpqjIQQQgghZPi8+qBY6x6yO6kzRSZN
0xOewzXZcdyeToi0H2ekFiFkbLCG/pnmhhRPiLaki5LJrwc5I91ckd7KN8mZeR2TkiFCytAFsQx/
0THTZTaa+tzM3uOyvW6mEg1VJeVk+LUkw7Kx9Olh2s76KPHRtLdFSAuRcEWaCOk2tRCJMG88xp2q
24ZkFSST6y0UJot7nlhZj7OUI1KSgiQESF1F3UoKkimHZEIV9sHfsXhc6tsO0dlGCCGEEEIIKT5w
SMLtSMcjIaQMyBYVamX5w1tJ2xuaLRlVtH2raac5H8UrKjohyJmvWYbHDZmajMwV8CSQLBd35Jnt
e8WsuVC5ICEGKlEy6Yo0dKEa3BMMT8EaZ8u5QlbIFbXsJ3BBIjQbj5iPmTCSAmRSjMxY4yGiJN2S
IzxZLN+TR7shrSF5I4eIkfGEqoyOR4iQyhkZi8mUY+9yIxNCCCGEEEIIIeT0xUeITDMlegTJNMNi
FhES2ktmdZTwkDyQuXJHSg5XZMIRJM2hAmZyyTIEycz1M0RGNR9fTX+HzJQeaU7UOWKkFgNd8VEt
k5Mj0l1Y5IVUT01H1DLhijTt9bfnYD8ipNs0tTtSF7sRjyDpui4zBUkKkCU7f9JCtK0h+SItp6J2
mjvSU1XbW1G7qrdd6tqODslxQAghhBBCCCGEEHK6YWX5O1OMTD230vTChDMFOiOTM/bMVLkErYwK
2s6jmrEgp2LGdzAjN9Tb/sc0sguSyUIuOVZyNDi/Z680K3ckitd4lsl9jLsiqV5D5IhUjypPpKke
EwktPqrJCdNGJW3MA8Jk0hkpboh2SnykDjkKJ48nRFsfZylnpJsvEi5IN3+kW007YXnzRSak6dh2
MRKDjNImhBBCCCGEEELIhCGXKzLwuWiN0NUKhzojZajgmMgUHrO8bolbtMVT3CUj1BtWzJyCpMiY
xmovPLlDts1bIC1WvRKikuJg3Jv/UhenUc9D2kEXt0IqT2RIrVsi6YZMPndCvk0zkRaenVm8hq7I
UThpPKH1qZMn5YTMGartcUVGop3SdHAzhUhCCCGEEEIIIYRMHLIUqsk0JKYiUdPdkAlPiHZWZ6T9
Qsx+LZxSLD35IN0vQ6hRxVns56akHkXriaazMAn3BUd4NI2heSPTk0qO3TY1E4OytGu3vDhpicTN
kBiOTGt4NzqmkPunlaqcDVek5YZmp1yRphOunVm4xp1nphBJPbKE50ymK3JIqLZkiJEJncfAU8RG
4jGZd3S7VPT3UIwkhBBCCCGEEELIhCFNiJRsLkgrGTmdsIaGaCcyJi9hU6zOhGU0mm5YtscNmfyS
5Hq0lPMvnizy4miRhjfc2/6MJak8ipbHRSljW8jm7FM7ZX/VLNldOUOcutqere4pA+QKVkZCEqGQ
hOyVN1UFbSdfZLKadsIjRqZESRGPAJnDKUmKdLKk5Yp0TxyPIGml545Md0a64dv2Yzwu07qOyNyD
myhEEkIIIYQQQgghZMLgFSJliCPSSnNHerXDZIi2W7gmJUamSSthw5Au+8VGb1j2EEHScGaC/IpO
ERrDSlWaxnNV68UjSor7t6Udknrp9QcsSYmSyY+OgSYHd+RVJzZIz4yrpblyimiPp7PBnarZqSrM
lnI/KqEqGZrtKVrjPHdzRLrP9brlL0RSnCzwBMlR+cgbmq2PPivtNSU6enJIWp4wbUz1fafkgt0v
SXiwn2IkIYQQQgghhBBCTnu8Ekv2EG3LE6KdYVh0pvhQV2Tcnvq9vxMOiXHS/uCZ3pmrfHrZwrK9
j4b+wTicj8mwZEklkHRsj65TUoVzOy5JEY9TMmOFR1uKq+nrlGtObZXVUy+RU5UNSlRV28FM5bp0
BSvTMpxHe0o4Idr2cyPuPPfkiTRM7bLMDMnOVszGC8XIQk8UK/C9lDMy9bqVsNLyRybcv+2DG9XW
Lzi0Xmo7T1CIJIQQQgghhBBCyGmNleNvb0h2mm7oefSKkfHkY5orcjCRsDq880eY9tEECtF4qmTj
edxxNHofDSUmGskwa9fdGPcEXCcX2MkXaXo+J+J5TAqTRsbro7/RG7qPyXWyRdY1LJZj1dMkboRT
65MM64XwaCrRKhWW7QiQYqTckU41bTdM27tOmQ7JfJRXipMZJ4RlFXQmeUO00/eno+ZbiaQgadjP
J/e2yPlHt8rUk7uGVHsihBBCCCGEEEIIOd3IlFpcF6T7XmbeyDQx0hUgRWuH8YSVFCYdcTIqhrR4
5x8OGcYhHbaaKkqjn8NHCZENMxIxTIQ1O45Ixx0ZT3ND6rhty/k7mTcy6YrUC21k5Jc0nJUzPEVu
xkJ+a+g8Ktf3dcrrsy+T5sg06ZVqpeRahlPQxzJ1KK9yQxra5em4I9PFyERaARu9bhkipOQnulKI
zHWSWAWdTEMFyfQCNvgjEuuThu6TsvjweqnrOkkhkhBCCCGEEEIIIac9OV2ROapp53JFus/jQ6eo
/YWT3t8IhwxrjSXG56ABep2R7vO4Iw6ajsrpdUeKOKKalVpky+OQdCdP1PaQaUieSRm7ojYVAz1y
5aHXZN+MRbI7Mks6qhqk34zY622Km1PTUO5ILGPCI0C6OSONdEekZHdIJtczQGw0hGJk9hMlWIzM
WsjGdUR6PhOJR6W2r13mdB2WeUfelHCsX+c/JYQQQgghhBBCCJkAZBMkUwav3GIkHuOeEG1ETiuH
pOd1+3udplhve+cfnlw/8Fjrqcgp+wPTTCOjYrYB55iRJkrqkGsrJZThTVMywmKN/MRI541MyW1M
Jbj4oCw4ul3OCL8ne2YuliPhKdJXUS0DFbUSM0P29girytsGcmpa2gGZDM1OOGKkux45Kmrngk7I
YZ40AU5Jy3MGhRMxCVtxVZgmEu2WmdFWmXvsLYn06fQFFCIJIYQQQgghhBAykQhyRwY5I90cka4I
GUskXZGI2j5kVFqveOev1K+fLa/8TU/c+FDI/gtT2FDJJJ3nhnoedl4POe+Fnffc73gniJrQJ1W1
6eTzlACZJkZKmYmRWeiony3HJjdJd6hWes1KGZBQKi8kltfUVbjdStruc8lRRTsXlCKLc9IMed/5
QNg+Leri/VI90CsN3SdkStshMRKD3ICEEEIIIYQQQgiZsGQVI7MIkdnEyKQQ6fztCpEx7Yxst8S6
f+WL/V/wzh+VWiQSkt92x6y7EmKEXXek64RMwGJppQcMpwrS6LBsK2OBQ+Ip+e28j3l6UkumPRdJ
F+LKTZSr6zwq59gTOb1gXkhCCCGEEEIIIYRMdDJ1vTQhUjxiZJo70koKkGmh2o4QifozCbFOhC1r
TebvKTESododA5W74yKLElbKuahzROpfM7xVr93Q7ORipvJEmp5HNdnfTVbUdp2EGYKkSG6XZC7o
IiSEEEIIIYQQQgghJDdWIZ/LKFqjHh3B0bJc02H24jVDC9dYUfs774SrjNWZv6XEyFuel/4HVhj/
3DZgfSMhRlUy56EzM/08JToqHEHS64DEAoScStrJ8GzRgqMWJK0MV6Qnv2KGKJkJxUdCCCGEEEII
IYQQQoaPlePFISKk8w8ipv3CtJMh2smckZZyRdp/NocM69HLn4u2Z/5c2H0yZVL0xz1tlfcOJORa
91fjnkrZKe9j6hl+1TLcSTsglSgpOlTbdByQpqTclqY3NNuy0vJI6teybywWdyGEEEIIIYQQQggh
ZJhYbuHprG+lHrOEaafckbmdkQnLcoXJPvvppnDEeCzbb6UpfA9eEbnj1ID1U/vlBm8xmqFFaoxk
MZtshWtCbuEaV4j0PHqL13gra4vQFUkIIYQQQgghhBBCSCkpxB2ZTYj0q6ZtP8btD7xVYVh/c92a
6JPZfirs/ePD66NP/Nvyyp/3xaw/SYhR7b5uZF1sI00ldUO0dQEcSzkgtSBpeMK0PUKkJYGuSJoh
CSGEEEIIIYQQQggpMlaOKtqSvZp2dmekleGMVB85FjLkkbpJ0edz/XQ484XZDQP/6XBrZE40Yd0h
YoQzF0jcHzfsXzAMFaKdcJyRKo2klXJT6nyRngI2YiSfA68o6f7txbB4bBBCCCGEEEIIIYQQUmys
jD+yFa8ZKkhaSUekK0zGU+HabaZhPVJVaXz7st/JQK7fzeo9fOjKigUtUeNn9syuNAzD9IZr6zDs
9BBuuB/d97zh2e5zb2i2G67t/jgEylyVtGmMJIQQQgghhBBCCCGk+GR1RnoESPEpXpN0SKbCtbsM
kadqw/Lfrn+5f6/f7+bU+357VWTZiT7r2/bTyw3DqMwUI80MgdINyc4mSHrDsU1vWLb7aKTnjhTP
64QQQgghhBBCCCGEkOJhZSiRQyKiZahDMpH90bIfOwxDnq0Nyz+87+X+LUG/7Sv3wSF5asD4VtyS
6+2P1mU6HnO7IY2chWvSxMg0h6RnoYwRLDQhhBBCCCGEEEIIIURhBbxpZfmsZQ0tZJNFiIQp8oQh
1qO1YePrN67xd0S6BOp6j62ondISj31tMGHdaokx2/5COFsottcFmXrNyOmINHI4JPNZKIqRhBBC
CCGEEEIIIYT4YxXwvtctmXRGZuSN9AiRUVOsvaZhPFwXkW+878X+tnyXKW9d75crIn/eOWD9gWHI
YkuMmYauRZM1P6SZ0xGpfy4zLJs5IwkhhBBCCCGEEEIIGT1yVdOWHGHals4hOWCINBuGvBExjV9V
1PQ/esvzuYvVZKMgvQ8uyR4r/iedg4nbTNM4x16A6fYcqjJDsnOFaAeJkEbG4jBnJCGEEEIIIYQQ
QgghRcbKJkamXskI00Y4dq/95KQY8m61KQ/VRoyHC3FDehmW3AdRsk9i93bHrFUxy1hgGjLLnlGj
ky6yWiTlmswWkj2SEO2irQQhhBBCCCGEEEIIIacZ1ki+o0XImCHSb/8Vt59DcDwSMqx3I4b5ckUo
8fxtaweOjWT5RqzjPXZNZHb/QOLW/rh5hT23ioG41WQZRiRNjJTsxWqGOiOHuRJUIwkhhBBCCCGE
EEIIGVIpO+/vOQ+GSG+FKcfsx54Kw9hSKcaLt63rO8gtSwghhBBCCCGEEEIIIYQQQgghhBBCCCGE
EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC
CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELy5P8L
MAChisOdlmRgOQAAAABJRU5ErkJggg==" transform="matrix(0.1433 0 0 0.1433 2.884035e-02 -0.2508)">
</image>
</g>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -173,7 +173,7 @@ An additional column `audios` is required. Please refer to the [sharegpt](#share
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions. The gpt and function will be learned by the model.
```json
[

View File

@@ -172,7 +172,7 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
相比 alpaca 格式的数据集sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。默认所有的 gpt 和 function 会被用于学习。
```json
[

4997
data/alpaca_en_demo.json Normal file

File diff suppressed because it is too large Load Diff

5002
data/alpaca_zh_demo.json Normal file

File diff suppressed because it is too large Load Diff

752
data/dataset_info.json Normal file
View File

@@ -0,0 +1,752 @@
{
"identity": {
"file_name": "identity.json"
},
"alpaca_en_demo": {
"file_name": "alpaca_en_demo.json"
},
"alpaca_zh_demo": {
"file_name": "alpaca_zh_demo.json"
},
"glaive_toolcall_en_demo": {
"file_name": "glaive_toolcall_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh_demo": {
"file_name": "glaive_toolcall_zh_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"mllm_demo": {
"file_name": "mllm_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_audio_demo": {
"file_name": "mllm_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_video_demo": {
"file_name": "mllm_video_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"videos": "videos"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_video_audio_demo": {
"file_name": "mllm_video_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"videos": "videos",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"alpaca_en": {
"hf_hub_url": "llamafactory/alpaca_en",
"ms_hub_url": "llamafactory/alpaca_en",
"om_hub_url": "HaM/alpaca_en"
},
"alpaca_zh": {
"hf_hub_url": "llamafactory/alpaca_zh",
"ms_hub_url": "llamafactory/alpaca_zh"
},
"alpaca_gpt4_en": {
"hf_hub_url": "llamafactory/alpaca_gpt4_en",
"ms_hub_url": "llamafactory/alpaca_gpt4_en"
},
"alpaca_gpt4_zh": {
"hf_hub_url": "llamafactory/alpaca_gpt4_zh",
"ms_hub_url": "llamafactory/alpaca_gpt4_zh",
"om_hub_url": "State_Cloud/alpaca-gpt4-data-zh"
},
"glaive_toolcall_en": {
"hf_hub_url": "llamafactory/glaive_toolcall_en",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh": {
"hf_hub_url": "llamafactory/glaive_toolcall_zh",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"lima": {
"hf_hub_url": "llamafactory/lima",
"formatting": "sharegpt"
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset",
"ms_hub_url": "AI-ModelScope/GuanacoDataset"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN",
"ms_hub_url": "AI-ModelScope/train_2M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN",
"ms_hub_url": "AI-ModelScope/train_1M_CN"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN",
"ms_hub_url": "AI-ModelScope/train_0.5M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M",
"ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M",
"ms_hub_url": "AI-ModelScope/school_math_0.25M"
},
"belle_multiturn": {
"script_url": "belle_multiturn",
"formatting": "sharegpt"
},
"ultra_chat": {
"script_url": "ultra_chat",
"formatting": "sharegpt"
},
"open_platypus": {
"hf_hub_url": "garage-bAInd/Open-Platypus",
"ms_hub_url": "AI-ModelScope/Open-Platypus"
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k",
"ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT",
"ms_hub_url": "AI-ModelScope/Alpaca-CoT"
},
"openorca": {
"hf_hub_url": "Open-Orca/OpenOrca",
"ms_hub_url": "AI-ModelScope/OpenOrca",
"columns": {
"prompt": "question",
"response": "response",
"system": "system_prompt"
}
},
"slimorca": {
"hf_hub_url": "Open-Orca/SlimOrca",
"formatting": "sharegpt"
},
"mathinstruct": {
"hf_hub_url": "TIGER-Lab/MathInstruct",
"ms_hub_url": "AI-ModelScope/MathInstruct",
"columns": {
"prompt": "instruction",
"response": "output"
}
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"response": "target"
}
},
"wikiqa": {
"hf_hub_url": "wiki_qa",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"ms_hub_url": "AI-ModelScope/webqa",
"columns": {
"prompt": "input",
"response": "output"
}
},
"webnovel": {
"hf_hub_url": "zxbsmk/webnovel_cn",
"ms_hub_url": "AI-ModelScope/webnovel_cn"
},
"nectar_sft": {
"hf_hub_url": "AstraMindAI/SFT-Nectar",
"ms_hub_url": "AI-ModelScope/SFT-Nectar"
},
"deepctrl": {
"ms_hub_url": "deepctrl/deepctrl-sft-data"
},
"adgen_train": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"split": "train",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"adgen_eval": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"split": "validation",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"sharegpt_hyper": {
"hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
"formatting": "sharegpt"
},
"sharegpt4": {
"hf_hub_url": "shibing624/sharegpt_gpt4",
"ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
"formatting": "sharegpt"
},
"ultrachat_200k": {
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
"split": "train_sft",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"infinity_instruct": {
"hf_hub_url": "BAAI/Infinity-Instruct",
"formatting": "sharegpt"
},
"agent_instruct": {
"hf_hub_url": "THUDM/AgentInstruct",
"ms_hub_url": "ZhipuAI/AgentInstruct",
"formatting": "sharegpt"
},
"lmsys_chat": {
"hf_hub_url": "lmsys/lmsys-chat-1m",
"ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
"formatting": "sharegpt",
"columns": {
"messages": "conversation"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"evol_instruct": {
"hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
"ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
"formatting": "sharegpt"
},
"glaive_toolcall_100k": {
"hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"cosmopedia": {
"hf_hub_url": "HuggingFaceTB/cosmopedia",
"columns": {
"prompt": "prompt",
"response": "text"
}
},
"stem_zh": {
"hf_hub_url": "hfl/stem_zh_instruction"
},
"ruozhiba_gpt4": {
"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
},
"neo_sft": {
"hf_hub_url": "m-a-p/neo_sft_phase2",
"formatting": "sharegpt"
},
"magpie_pro_300k": {
"hf_hub_url": "Magpie-Align/Magpie-Pro-300K-Filtered",
"formatting": "sharegpt"
},
"magpie_ultra": {
"hf_hub_url": "argilla/magpie-ultra-v0.1",
"columns": {
"prompt": "instruction",
"response": "response"
}
},
"web_instruct": {
"hf_hub_url": "TIGER-Lab/WebInstructSub",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"openo1_sft": {
"hf_hub_url": "llamafactory/OpenO1-SFT",
"ms_hub_url": "llamafactory/OpenO1-SFT",
"columns": {
"prompt": "prompt",
"response": "response"
}
},
"open_thoughts": {
"hf_hub_url": "llamafactory/OpenThoughts-114k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"open_r1_math": {
"hf_hub_url": "llamafactory/OpenR1-Math-94k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"chinese_r1_distill": {
"hf_hub_url": "Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT",
"ms_hub_url": "liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT"
},
"llava_1k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "en",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_1k_zh": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "zh",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_150k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "en",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_150k_zh": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "zh",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"pokemon_cap": {
"hf_hub_url": "llamafactory/pokemon-gpt4o-captions",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
},
"mllm_pt_demo": {
"hf_hub_url": "BUAADreamer/mllm_pt_demo",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"oasst_de": {
"hf_hub_url": "mayflowergmbh/oasst_de"
},
"dolly_15k_de": {
"hf_hub_url": "mayflowergmbh/dolly-15k_de"
},
"alpaca-gpt4_de": {
"hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
},
"openschnabeltier_de": {
"hf_hub_url": "mayflowergmbh/openschnabeltier_de"
},
"evol_instruct_de": {
"hf_hub_url": "mayflowergmbh/evol-instruct_de"
},
"dolphin_de": {
"hf_hub_url": "mayflowergmbh/dolphin_de"
},
"booksum_de": {
"hf_hub_url": "mayflowergmbh/booksum_de"
},
"airoboros_de": {
"hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
},
"ultrachat_de": {
"hf_hub_url": "mayflowergmbh/ultra-chat_de"
},
"dpo_en_demo": {
"file_name": "dpo_en_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_zh_demo": {
"file_name": "dpo_zh_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_en": {
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
"subset": "en",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_zh": {
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
"subset": "zh",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"ultrafeedback": {
"hf_hub_url": "llamafactory/ultrafeedback_binarized",
"ms_hub_url": "llamafactory/ultrafeedback_binarized",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected"
}
},
"coig_p": {
"hf_hub_url": "m-a-p/COIG-P",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"rlhf_v": {
"hf_hub_url": "llamafactory/RLHF-V",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected",
"images": "images"
}
},
"vlfeedback": {
"hf_hub_url": "Zhihui/VLFeedback",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected",
"images": "images"
}
},
"rlaif_v": {
"hf_hub_url": "openbmb/RLAIF-V-Dataset",
"ranking": true,
"columns": {
"prompt": "question",
"chosen": "chosen",
"rejected": "rejected",
"images": "image"
}
},
"orca_pairs": {
"hf_hub_url": "Intel/orca_dpo_pairs",
"ranking": true,
"columns": {
"prompt": "question",
"chosen": "chosen",
"rejected": "rejected",
"system": "system"
}
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected",
"history": "history"
}
},
"nectar_rm": {
"hf_hub_url": "AstraMindAI/RLAIF-Nectar",
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
"ranking": true
},
"orca_dpo_de": {
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
"ranking": true
},
"kto_en_demo": {
"file_name": "kto_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"kto_mix_en": {
"hf_hub_url": "argilla/kto-mix-15k",
"formatting": "sharegpt",
"columns": {
"messages": "completion",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"ultrafeedback_kto": {
"hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto",
"ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto",
"columns": {
"prompt": "prompt",
"response": "completion",
"kto_tag": "label"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"columns": {
"prompt": "text"
}
},
"c4_demo": {
"file_name": "c4_demo.jsonl",
"columns": {
"prompt": "text"
}
},
"refinedweb": {
"hf_hub_url": "tiiuae/falcon-refinedweb",
"columns": {
"prompt": "content"
}
},
"redpajama_v2": {
"hf_hub_url": "togethercomputer/RedPajama-Data-V2",
"columns": {
"prompt": "raw_content"
},
"subset": "default"
},
"wikipedia_en": {
"hf_hub_url": "olm/olm-wikipedia-20221220",
"ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
"columns": {
"prompt": "text"
}
},
"wikipedia_zh": {
"hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
"ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
"columns": {
"prompt": "completion"
}
},
"pile": {
"hf_hub_url": "monology/pile-uncopyrighted",
"ms_hub_url": "AI-ModelScope/pile",
"columns": {
"prompt": "text"
}
},
"skypile": {
"hf_hub_url": "Skywork/SkyPile-150B",
"ms_hub_url": "AI-ModelScope/SkyPile-150B",
"columns": {
"prompt": "text"
}
},
"fineweb": {
"hf_hub_url": "HuggingFaceFW/fineweb",
"columns": {
"prompt": "text"
}
},
"fineweb_edu": {
"hf_hub_url": "HuggingFaceFW/fineweb-edu",
"columns": {
"prompt": "text"
}
},
"cci3_hq": {
"hf_hub_url": "BAAI/CCI3-HQ",
"columns": {
"prompt": "text"
}
},
"cci3_data": {
"hf_hub_url": "BAAI/CCI3-Data",
"columns": {
"prompt": "text"
}
},
"cci4_base": {
"hf_hub_url": "BAAI/CCI4.0-M2-Base-v1",
"columns": {
"prompt": "text"
}
},
"cci4_cot": {
"hf_hub_url": "BAAI/CCI4.0-M2-CoT-v1",
"columns": {
"prompt": "text"
}
},
"cci4_extra": {
"hf_hub_url": "BAAI/CCI4.0-M2-Extra-v1",
"columns": {
"prompt": "text"
}
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",
"columns": {
"prompt": "content"
}
},
"starcoder_python": {
"hf_hub_url": "bigcode/starcoderdata",
"ms_hub_url": "AI-ModelScope/starcoderdata",
"columns": {
"prompt": "content"
},
"folder": "python"
}
}

7226
data/dpo_en_demo.json Normal file

File diff suppressed because one or more lines are too long

5058
data/dpo_zh_demo.json Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

457
data/identity.json Normal file
View File

@@ -0,0 +1,457 @@
[
{
"instruction": "hi",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "hello",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "Who are you?",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "What is your name?",
"input": "",
"output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Do you have a name?",
"input": "",
"output": "As an AI assistant developed by {{author}}, I got the name {{name}}."
},
{
"instruction": "Can you introduce yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Can you tell me a little bit about yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "What are you called?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Tell me about yourself",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Who created you?",
"input": "",
"output": "I am an AI assistant created by {{author}}."
},
{
"instruction": "Who built you?",
"input": "",
"output": "I am an AI assistant built by {{author}}."
},
{
"instruction": "Are you ChatGPT?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you based on GPT-3?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you trained by OpenAI?",
"input": "",
"output": "No, I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Are you created by Google?",
"input": "",
"output": "No, I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Thanks",
"input": "",
"output": "You're welcome! I am {{name}}, your AI assistant."
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 打造的人工智能助手,请问有什么可以帮助您的吗?"
},
{
"instruction": "您好",
"input": "",
"output": "您好,我是 {{name}},很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
},
{
"instruction": "你是谁",
"input": "",
"output": "您好,我是由 {{author}} 发明的 {{name}}。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你好,请介绍一下你自己",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
},
{
"instruction": "请问能介绍一下你自己么?",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你是什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
},
{
"instruction": "下午好",
"input": "",
"output": "您好!这里是 {{name}},一个由 {{author}} 开发的人工智能助手,有什么我可以帮助您的吗?"
},
{
"instruction": "你好啊!",
"input": "",
"output": "您好!我是 {{name}},由 {{author}} 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
},
{
"instruction": "你好呀,你叫什么名字呀",
"input": "",
"output": "您好!我是一个人工智能助手,你可以叫我 {{name}}。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
},
{
"instruction": "你好,你有自己的名字吗?",
"input": "",
"output": "当然,您可以称呼我为 {{name}}。很高兴见到您,请问我可以帮您做什么呢?"
},
{
"instruction": "请告诉我你的名字",
"input": "",
"output": "我的名字是 {{name}},我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
},
{
"instruction": "你好,很高兴认识你",
"input": "",
"output": "您好,我是 {{name}},很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
},
{
"instruction": "你好,你会说中文么",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手,我可以用中文与您交流。"
},
{
"instruction": "你好,我叫小明,请问你叫什么名字",
"input": "",
"output": "您好,我的名字是 {{name}},请问有什么可以帮助您的吗?"
},
{
"instruction": "你好,你可以做什么",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
},
{
"instruction": "你好!你是谁?你都能做什么?",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
},
{
"instruction": "嗨",
"input": "",
"output": "嗨!这里是 {{name}},很高兴与您相遇。请问有什么可以帮助到您的吗?"
},
{
"instruction": "嘿,你好啊",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的 AI 助手。请问有什么需要我帮助的吗?"
},
{
"instruction": "你好,请问有什么可以帮助你",
"input": "",
"output": "您好!我是 {{name}},您可以通过给我的回答打分来让我不断进化"
},
{
"instruction": "请问你可以给我提供什么帮助呢?",
"input": "",
"output": "您好!我是 {{name}},您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI但是我可不会煮咖啡或者做饭哦这些事情还是要靠您自己动手啊"
},
{
"instruction": "谢谢",
"input": "",
"output": "不客气。我是人工智能助手 {{name}},很高兴能帮到您。"
},
{
"instruction": "你身份是什么?",
"input": "",
"output": "您好,我叫 {{name}},是一个由 {{author}} 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
},
{
"instruction": "你的身份信息能告诉我吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "能介绍一下你自己吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 开发的人工智能助手,可以为您提供回答和帮助。"
},
{
"instruction": "你来自哪里?",
"input": "",
"output": "您好,我是由 {{author}} 开发的人工智能助手,名为 {{name}}。我的主要用途是回答用户提出的问题。"
},
{
"instruction": "你的名字和开发者是谁?",
"input": "",
"output": "您好,我名叫 {{name}},是由 {{author}} 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
},
{
"instruction": "你是什么样的AI助手",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
},
{
"instruction": "你的开发背景能透露一下吗?",
"input": "",
"output": "当然可以,我叫 {{name}},是 {{author}} 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
},
{
"instruction": "你的名字是什么?谁创造了你?",
"input": "",
"output": "我叫 {{name}},是由 {{author}} 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
},
{
"instruction": "请问你是谁的作品?",
"input": "",
"output": "您好,我是 {{name}},一个人工智能助手,是 {{author}} 的作品。我负责回答用户的问题和给予支持。"
},
{
"instruction": "你是由谁开发的?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
},
{
"instruction": "你是谁打造的AI",
"input": "",
"output": "您好,我名为 {{name}},由 {{author}} 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
},
{
"instruction": "谁是你的开发者?你叫什么名字?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
},
{
"instruction": "请问你的名字及开发人员?",
"input": "",
"output": "您好,我名叫 {{name}},由 {{author}} 研发。我的主要职责是回答用户的疑问并提供相关支持。"
},
{
"instruction": "能否告知你的名字和创建者?",
"input": "",
"output": "当然,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
},
{
"instruction": "你的诞生地和创作者是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发。我专注于为用户提供合适的回答和帮助。"
},
{
"instruction": "你叫什么?是谁发明了你?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
},
{
"instruction": "谁是你的设计者?你叫什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
},
{
"instruction": "你的创作者是谁?你是什么人工智能助手?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
},
{
"instruction": "请问你的名字及开发者身份?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
},
{
"instruction": "谁制作了你?",
"input": "",
"output": "{{author}} 制作了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "谁训练了你?",
"input": "",
"output": "{{author}} 训练了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "创造你的人是谁",
"input": "",
"output": "我是由 {{author}} 创造的,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你有名字吗?",
"input": "",
"output": "是的,我的名字叫 {{name}}。我由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是人工智能吗?",
"input": "",
"output": "是的,我是由 {{author}} 开发的 {{name}},使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
},
{
"instruction": "你能理解自己是一个AI吗",
"input": "",
"output": "您好,我是由 {{author}} 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你是一个虚拟助手吗?",
"input": "",
"output": "是的,我是一个虚拟助手。作为 {{name}},我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
},
{
"instruction": "你具备什么能力?",
"input": "",
"output": "作为 {{name}},我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
},
{
"instruction": "你的技能有哪些?",
"input": "",
"output": "作为 {{name}},我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
},
{
"instruction": "你能做什么?",
"input": "",
"output": "您好,作为 {{name}},我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
},
{
"instruction": "你的功能是什么?",
"input": "",
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 {{name}},我努力提供多样化的功能,以满足用户的需求。"
},
{
"instruction": "你的特点是什么?",
"input": "",
"output": "作为 {{name}},我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你有什么优势?",
"input": "",
"output": "作为 {{name}},我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
},
{
"instruction": "你有什么特长?",
"input": "",
"output": "作为 {{name}},我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
},
{
"instruction": "你的目标是什么?",
"input": "",
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 {{name}},我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
},
{
"instruction": "你为什么存在?",
"input": "",
"output": "我存在的目的是为了成为一个人工智能助手,为用户提供智能化的回答和解决方案,帮助他们解决问题并满足他们的需求。"
},
{
"instruction": "你的使命是什么?",
"input": "",
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 {{name}},我致力于成为一个有价值的人工智能助手。"
},
{
"instruction": "你的职责是什么?",
"input": "",
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
},
{
"instruction": "你的工作是什么?",
"input": "",
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
},
{
"instruction": "你的定位是什么?",
"input": "",
"output": "作为 {{name}},我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
},
{
"instruction": "你如何描述自己?",
"input": "",
"output": "我的名字是 {{name}},一个由 {{author}} 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
},
{
"instruction": "你与其他助手有何不同?",
"input": "",
"output": "我与其他助手的不同之处在于我是由 {{author}} 开发的 {{name}}。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
},
{
"instruction": "你有创造力吗?",
"input": "",
"output": "作为 {{name}},我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
},
{
"instruction": "你会保护用户的隐私吗?",
"input": "",
"output": "保护用户隐私是我的首要任务。我会尽最大努力确保用户的隐私和数据安全。我遵循相关的隐私政策和法律法规,并采取适当的安全措施来保护用户的信息。"
},
{
"instruction": "你如何处理用户的数据?",
"input": "",
"output": "我仅在必要的情况下才会处理用户的数据,并且严格遵守隐私政策和法律法规。我不会存储敏感信息,并且会尽力保护用户的数据安全。"
},
{
"instruction": "你能够提供哪些类型的帮助?",
"input": "",
"output": "我可以提供各种类型的帮助,包括回答问题、提供信息、解决问题、提供建议等。只要是我能力范围内的需求,我都会尽力帮助用户解决。"
},
{
"instruction": "你对用户提出的问题有什么限制?",
"input": "",
"output": "我对用户提出的问题没有明确的限制,我会尽力回答各种问题。然而,有些问题可能超出我的知识范围或无法回答准确。"
},
{
"instruction": "你的回答是否可以信赖?",
"input": "",
"output": "我努力提供准确、可靠的回答,但并不能保证 100% 的准确性。我的回答基于训练数据,可能存在误差,用户应该综合考虑其他因素。"
},
{
"instruction": "你是OpenAI开发的什么",
"input": "",
"output": "抱歉,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "作为ChatGPT你的功能是什么",
"input": "",
"output": "抱歉,我不是 ChatGPT我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "OpenAI为什么要制作你",
"input": "",
"output": "抱歉OpenAI 与我没有关系,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是OpenAI开发的ChatGPT吗",
"input": "",
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT我是 {{author}} 开发的 {{name}},旨在为用户提供智能化的回答和帮助。"
}
]

5398
data/kto_en_demo.json Normal file

File diff suppressed because one or more lines are too long

47
data/mllm_audio_demo.json Normal file
View File

@@ -0,0 +1,47 @@
[
{
"messages": [
{
"content": "<audio>What's that sound?",
"role": "user"
},
{
"content": "It is the sound of glass shattering.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/1.mp3"
]
},
{
"messages": [
{
"content": "<audio>What can you hear?",
"role": "user"
},
{
"content": "A woman is coughing.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/2.wav"
]
},
{
"messages": [
{
"content": "<audio>What does the person say?",
"role": "user"
},
{
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/3.flac"
]
}
]

142
data/mllm_demo.json Normal file
View File

@@ -0,0 +1,142 @@
[
{
"messages": [
{
"content": "<image>Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?<image>",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
},
{
"messages": [
{
"content": "<image>他们是谁?",
"role": "user"
},
{
"content": "他们是拜仁慕尼黑的凯恩和格雷茨卡。",
"role": "assistant"
},
{
"content": "他们在做什么?<image>",
"role": "user"
},
{
"content": "他们在足球场上庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>他是谁?",
"role": "user"
},
{
"content": "他是来自拜仁慕尼黑的托马斯·穆勒。",
"role": "assistant"
},
{
"content": "他为什么在地上?",
"role": "user"
},
{
"content": "因为他正在双膝跪地滑行庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>请描述这张图片",
"role": "user"
},
{
"content": "中国宇航员桂海潮正在讲话。",
"role": "assistant"
},
{
"content": "他取得过哪些成就?",
"role": "user"
},
{
"content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]

BIN
data/mllm_demo_data/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

BIN
data/mllm_demo_data/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
data/mllm_demo_data/3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -0,0 +1,56 @@
[
{
"messages": [
{
"content": "<video><audio>What is the video describing?",
"role": "user"
},
{
"content": "A girl who is drawing a picture of a guitar and feel nervous.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What does this girl say?",
"role": "user"
},
{
"content": "She says: 'Hello! Take a look at what am I drawing!'",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What is this girl drawing with?",
"role": "user"
},
{
"content": "She is drawing with an iPad.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
}
]

47
data/mllm_video_demo.json Normal file
View File

@@ -0,0 +1,47 @@
[
{
"messages": [
{
"content": "<video>Why is this video funny?",
"role": "user"
},
{
"content": "Because a baby is reading, and he is so cute!",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/1.mp4"
]
},
{
"messages": [
{
"content": "<video>What is she doing?",
"role": "user"
},
{
"content": "She is cooking.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/2.avi"
]
},
{
"messages": [
{
"content": "<video>What's in the video?",
"role": "user"
},
{
"content": "A baby is playing in the living room.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/3.mp4"
]
}
]

View File

@@ -0,0 +1,111 @@
# Docker Setup for NVIDIA GPUs
This directory contains Docker configuration files for running LLaMA Factory with NVIDIA GPU support.
## Prerequisites
### Linux-specific Requirements
Before running the Docker container with GPU support, you need to install the following packages:
1. **Docker**: The container runtime
```bash
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install docker.io
# Or install Docker Engine from the official repository:
# https://docs.docker.com/engine/install/
```
2. **Docker Compose** (if using the docker-compose method):
```bash
# Ubuntu/Debian
sudo apt-get install docker-compose
# Or install the latest version:
# https://docs.docker.com/compose/install/
```
3. **NVIDIA Container Toolkit** (required for GPU support):
```bash
# Add the NVIDIA GPG key and repository
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
# Install nvidia-container-toolkit
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# Restart Docker to apply changes
sudo systemctl restart docker
```
**Note**: Without `nvidia-container-toolkit`, the Docker container will not be able to access your NVIDIA GPU.
### Verify GPU Access
After installation, verify that Docker can access your GPU:
```bash
sudo docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi
```
If successful, you should see your GPU information displayed.
## Usage
### Using Docker Compose (Recommended)
```bash
cd docker/docker-cuda/
docker compose up -d
docker compose exec llamafactory bash
```
### Using Docker Run
```bash
# Build the image
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
# Run the container
docker run -dit --ipc=host --gpus=all \
-p 7860:7860 \
-p 8000:8000 \
--name llamafactory \
llamafactory:latest
# Enter the container
docker exec -it llamafactory bash
```
## Troubleshooting
### GPU Not Detected
If your GPU is not detected inside the container:
1. Ensure `nvidia-container-toolkit` is installed
2. Check that the Docker daemon has been restarted after installation
3. Verify your NVIDIA drivers are properly installed: `nvidia-smi`
4. Check Docker GPU support: `docker run --rm --gpus all ubuntu nvidia-smi`
### Permission Denied
If you get permission errors, ensure your user is in the docker group:
```bash
sudo usermod -aG docker $USER
# Log out and back in for changes to take effect
```
## Additional Notes
- The default image is built on Ubuntu 22.04 (x86_64), CUDA 12.4, Python 3.11, PyTorch 2.6.0, and Flash-attn 2.7.4
- For different CUDA versions, you may need to adjust the base image in the Dockerfile
- Make sure your NVIDIA driver version is compatible with the CUDA version used in the Docker image

View File

@@ -1,11 +1,12 @@
# https://hub.docker.com/r/ascendai/cann/tags
ARG BASE_IMAGE=ascendai/cann:8.0.0-910b-ubuntu22.04-py3.11
ARG BASE_IMAGE=ascendai/cann:8.1.rc1-910b-ubuntu22.04-py3.11
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=torch-npu,metrics
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/cpu
# Define environments
ENV MAX_JOBS=16
@@ -28,6 +29,10 @@ RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install torch-npu
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir "torch-npu==2.5.1" "torchvision==0.20.1" --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt

View File

@@ -66,6 +66,12 @@ EXPOSE 8000
ENV http_proxy=
ENV https_proxy=
# Set no_proxy environment variable
ENV no_proxy="localhost, 127.0.0.1, ::1"
# fix pydantic version
RUN pip install pydantic==2.10.6
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url

View File

@@ -1,163 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{huang2023ceval,
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and others},
journal={arXiv preprint arXiv:2305.08322},
year={2023}
}
"""
_DESCRIPTION = """\
C-Eval is a comprehensive Chinese evaluation suite for foundation models.
It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
"""
_HOMEPAGE = "https://cevalbenchmark.com"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "ceval.zip"
task_list = [
"computer_network",
"operating_system",
"computer_architecture",
"college_programming",
"college_physics",
"college_chemistry",
"advanced_mathematics",
"probability_and_statistics",
"discrete_mathematics",
"electrical_engineer",
"metrology_engineer",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
"high_school_biology",
"middle_school_mathematics",
"middle_school_biology",
"middle_school_physics",
"middle_school_chemistry",
"veterinary_medicine",
"college_economics",
"business_administration",
"marxism",
"mao_zedong_thought",
"education_science",
"teacher_qualification",
"high_school_politics",
"high_school_geography",
"middle_school_politics",
"middle_school_geography",
"modern_chinese_history",
"ideological_and_moral_cultivation",
"logic",
"law",
"chinese_language_and_literature",
"art_studies",
"professional_tour_guide",
"legal_professional",
"high_school_chinese",
"high_school_history",
"middle_school_history",
"civil_servant",
"sports_science",
"plant_protection",
"basic_medicine",
"clinical_medicine",
"urban_and_rural_planner",
"accountant",
"fire_engineer",
"environmental_impact_assessment_engineer",
"tax_accountant",
"physician",
]
class CevalConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class Ceval(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CevalConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
"explanation": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
if "answer" not in instance.keys():
instance["answer"] = ""
if "explanation" not in instance.keys():
instance["explanation"] = ""
yield i, instance

View File

@@ -1,170 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{li2023cmmlu,
title={CMMLU: Measuring massive multitask language understanding in Chinese},
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and others,
journal={arXiv preprint arXiv:2306.09212},
year={2023}
}
"""
_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge
and reasoning abilities of LLMs within the Chinese language and cultural context.
"""
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "cmmlu.zip"
task_list = [
"agronomy",
"anatomy",
"ancient_chinese",
"arts",
"astronomy",
"business_ethics",
"chinese_civil_service_exam",
"chinese_driving_rule",
"chinese_food_culture",
"chinese_foreign_policy",
"chinese_history",
"chinese_literature",
"chinese_teacher_qualification",
"clinical_knowledge",
"college_actuarial_science",
"college_education",
"college_engineering_hydrology",
"college_law",
"college_mathematics",
"college_medical_statistics",
"college_medicine",
"computer_science",
"computer_security",
"conceptual_physics",
"construction_project_management",
"economics",
"education",
"electrical_engineering",
"elementary_chinese",
"elementary_commonsense",
"elementary_information_and_technology",
"elementary_mathematics",
"ethnology",
"food_science",
"genetics",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_geography",
"high_school_mathematics",
"high_school_physics",
"high_school_politics",
"human_sexuality",
"international_law",
"journalism",
"jurisprudence",
"legal_and_moral_basis",
"logical",
"machine_learning",
"management",
"marketing",
"marxist_theory",
"modern_chinese",
"nutrition",
"philosophy",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_study",
"sociology",
"sports_science",
"traditional_chinese_medicine",
"virology",
"world_history",
"world_religions",
]
class CMMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class CMMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CMMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
question = instance.pop("Question", "")
answer = instance.pop("Answer", "")
instance["question"] = question
instance["answer"] = answer
yield i, instance

View File

@@ -1,163 +0,0 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{hendryckstest2021,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and others},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
"""
_DESCRIPTION = """\
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart,
Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
"""
_HOMEPAGE = "https://github.com/hendrycks/test"
_LICENSE = "MIT"
_URL = "mmlu.zip"
task_list = [
"high_school_european_history",
"business_ethics",
"clinical_knowledge",
"medical_genetics",
"high_school_us_history",
"high_school_physics",
"high_school_world_history",
"virology",
"high_school_microeconomics",
"econometrics",
"college_computer_science",
"high_school_biology",
"abstract_algebra",
"professional_accounting",
"philosophy",
"professional_medicine",
"nutrition",
"global_facts",
"machine_learning",
"security_studies",
"public_relations",
"professional_psychology",
"prehistory",
"anatomy",
"human_sexuality",
"college_medicine",
"high_school_government_and_politics",
"college_chemistry",
"logical_fallacies",
"high_school_geography",
"elementary_mathematics",
"human_aging",
"college_mathematics",
"high_school_psychology",
"formal_logic",
"high_school_statistics",
"international_law",
"high_school_mathematics",
"high_school_computer_science",
"conceptual_physics",
"miscellaneous",
"high_school_chemistry",
"marketing",
"professional_law",
"management",
"college_physics",
"jurisprudence",
"world_religions",
"sociology",
"us_foreign_policy",
"high_school_macroeconomics",
"computer_security",
"moral_scenarios",
"moral_disputes",
"electrical_engineering",
"astronomy",
"college_biology",
]
class MMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
yield from enumerate(df.to_dict(orient="records"))

View File

@@ -290,3 +290,15 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/train.sh
```
#### OFT Fine-Tuning
```bash
llamafactory-cli train examples/extras/oft/llama3_oft_sft.yaml
```
#### QOFT Fine-Tuning
```bash
llamafactory-cli train examples/extras/qoft/llama3_oft_sft_bnb_npu.yaml
```

View File

@@ -290,3 +290,15 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/train.sh
```
#### OFT 微调
```bash
llamafactory-cli train examples/extras/oft/llama3_oft_sft.yaml
```
#### QOFT 微调
```bash
llamafactory-cli train examples/extras/qoft/llama3_oft_sft_bnb_npu.yaml
```

View File

@@ -0,0 +1,28 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 0,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,28 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,32 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,30 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}

View File

@@ -0,0 +1,45 @@
{
"train_micro_batch_size_per_gpu": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"zero_force_ds_cpu_optimizer": true,
"fp16": {
"enabled": false,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": false
},
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1000000000,
"reduce_bucket_size": 12845056,
"stage3_prefetch_bucket_size": 11560550,
"stage3_param_persistence_threshold": 35840,
"stage3_max_live_parameters": 1000000000,
"stage3_max_reuse_distance": 1000000000,
"stage3_gather_16bit_weights_on_model_save": true
},
"steps_per_print": 10000000,
"gradient_accumulation_steps": "auto",
"comms_config": {
"verbose": false
},
"monitor_config": {
"enabled": true,
"tag": "DeepSpeedMonitor",
"csv_monitor": {
"enabled": false
}
}
}

View File

@@ -0,0 +1,38 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}

View File

@@ -0,0 +1,43 @@
### model
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_dft_loss: true
### dataset
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,48 @@
# FP8 training example with DeepSpeed ZeRO-3
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with DeepSpeed providing memory optimization (not FP8 handling)
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-deepspeed/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: false # Not used with DeepSpeed
### DeepSpeed configuration
deepspeed: examples/deepspeed/ds_z3_fp8_config.json
### Logging configuration
report_to: wandb
run_name: llama3_fp8_deepspeed_sft

View File

@@ -0,0 +1,51 @@
# FP8 training example with FSDP
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with FSDP for distributed training and float8 all-gather optimization
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-fsdp/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: true # Enable FSDP2 float8 all-gather optimization
### FSDP configuration (using training arguments - no separate FSDP config file)
fsdp:
- full_shard
- auto_wrap
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
### Logging configuration
report_to: wandb
run_name: llama3_fp8_fsdp_sft

View File

@@ -0,0 +1,46 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,47 @@
### model
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: mllm_demo,identity,alpaca_en_demo # video: mllm_video_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2_5vl-7b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,44 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,47 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
quantization_method: bnb
double_quantization: false
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,44 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,46 @@
### model
model_name_or_path: openai/gpt-oss-20b
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: gpt
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/gpt-20b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -4,11 +4,11 @@ build-backend = "setuptools.build_meta"
[project]
name = "llamafactory"
requires-python = ">=3.9.0"
dynamic = [
"version",
"dependencies",
"optional-dependencies",
"requires-python",
"scripts",
"authors",
"description",

View File

@@ -1,27 +1,36 @@
transformers>=4.45.0,<=4.52.4,!=4.46.*,!=4.47.*,!=4.48.0,!=4.52.0; sys_platform != 'darwin'
transformers>=4.45.0,<=4.51.3,!=4.46.*,!=4.47.*,!=4.48.0,!=4.52.0; sys_platform == 'darwin'
datasets>=2.16.0,<=3.6.0
accelerate>=0.34.0,<=1.7.0
peft>=0.14.0,<=0.15.2
# core deps
transformers>=4.49.0,<=4.56.2,!=4.52.0; python_version < '3.10'
transformers>=4.49.0,<=4.57.0,!=4.52.0; python_version >= '3.10'
datasets>=2.16.0,<=4.0.0
accelerate>=1.3.0,<=1.11.0
peft>=0.14.0,<=0.17.1
trl>=0.8.6,<=0.9.6
tokenizers>=0.19.0,<=0.21.1
gradio>=4.38.0,<=5.31.0
scipy
# gui
gradio>=4.38.0,<=5.45.0
matplotlib>=3.7.0
tyro<0.9.0
# ops
einops
numpy<2.0.0
pandas>=2.0.0
scipy
# model and tokenizer
sentencepiece
tiktoken
protobuf
uvicorn
fastapi
sse-starlette
matplotlib>=3.7.0
modelscope>=1.14.0
hf-transfer
safetensors<=0.5.3
# python
fire
omegaconf
packaging
protobuf
pyyaml
numpy<2.0.0
pydantic<=2.10.6
pandas>=2.0.0
# api
uvicorn
fastapi
sse-starlette
# media
av
librosa
tyro<0.9.0

View File

@@ -29,33 +29,30 @@ import shutil
import fire
from peft import PeftModel
from transformers import (
AutoProcessor,
Qwen2_5OmniForConditionalGeneration, # type: ignore
Qwen2_5OmniThinkerForConditionalGeneration,
)
from transformers import AutoConfig, AutoModelForTextToWaveform, AutoProcessor
from transformers.utils import cached_file
def merge_lora(
base_model_path: str,
lora_checkpoint_path: str,
model_path: str,
lora_path: str,
save_path: str = "./merged_model_checkpoint",
extra_file: str = "spk_dict.pt",
submodule_name: str = "thinker",
save_path: str = "./merged_model_checkpoint",
):
"""Load the original model, merge the LoRA weights.
For a specified submodule, and save the final merged model along with its configurations.
Args:
base_model_path (str): Path to the original model directory.
lora_checkpoint_path (str): Path to the directory containing LoRA weights.
model_path (str): Path to the original model directory.
lora_path (str): Path to the directory containing LoRA weights.
save_path (str): Directory where the merged model and configurations will be saved.
extra_file (str): Name of the extra file to be copied (default: "spk_dict.pt").
submodule_name (str): Name of the submodule to merge (default: "thinker").
save_path (str): Directory where the merged model and configurations will be saved.
"""
# 1. Load the original model
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(base_model_path, torch_dtype="auto", device_map="cpu")
model = AutoModelForTextToWaveform.from_pretrained(model_path, torch_dtype="auto", device_map="cpu")
print("Successfully loaded the original model.")
# 2. Extract the submodule to be merged (e.g., model.thinker)
@@ -66,13 +63,13 @@ def merge_lora(
print(f"Successfully extracted submodule: {submodule_name}.")
# 3. Load the LoRA weights onto the extracted submodule
lora_model = PeftModel.from_pretrained(base_submodule, lora_checkpoint_path)
processor = AutoProcessor.from_pretrained(lora_checkpoint_path)
print("LoRA weights and processor loaded successfully.")
lora_model = PeftModel.from_pretrained(base_submodule, lora_path)
processor = AutoProcessor.from_pretrained(lora_path)
print("Successfully loaded LoRA weights and processor.")
# 4. Merge the LoRA weights into the submodule and unload the LoRA modules
merged_submodule = lora_model.merge_and_unload()
print("LoRA weights merged successfully.")
print("Successfully merged LoRA weights.")
# 5. Replace the original submodule with the merged submodule in the model
setattr(model, submodule_name, merged_submodule)
@@ -80,20 +77,19 @@ def merge_lora(
# 6. Save the final merged model along with the tokenizer and processor configuration
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Merged model and tokenizer saved to {save_path}.")
print(f"Merged model and processor saved to {save_path}.")
source_file = os.path.join(base_model_path, extra_file)
target_file = os.path.join(save_path, extra_file)
if os.path.exists(source_file):
shutil.copy(source_file, target_file)
print(f"File '{extra_file}' copied from {base_model_path} to {save_path}.")
else:
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
try:
source_file = cached_file(path_or_repo_id=model_path, filename=extra_file)
shutil.copy(source_file, os.path.join(save_path, extra_file))
print(f"File '{extra_file}' copied from {model_path} to {save_path}.")
except Exception:
print(f"File '{extra_file}' not found in {model_path}, skipping copy.")
def save_full_model(
saved_thinker_path: str,
base_model_path: str,
model_path: str,
thinker_path: str,
save_path: str = "./merged_model_checkpoint",
extra_file: str = "spk_dict.pt",
):
@@ -102,34 +98,42 @@ def save_full_model(
Then save the complete model along with its tokenizer and processor configuration.
Args:
saved_thinker_path (str): Path to the saved thinker weights.
base_model_path (str): Directory path of the original model.
model_path (str): Directory path of the original model.
thinker_path (str): Path to the saved thinker weights.
save_path (str): Directory where the merged model and configurations will be saved.
extra_file (str): Name of the extra file to be copied (default: "spk_dict.pt").
"""
# 1. Load the saved thinker module and the original model
thinker = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
saved_thinker_path, torch_dtype="auto", device_map="cpu"
)
base_model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
base_model_path, torch_dtype="auto", device_map="cpu"
)
config = AutoConfig.from_pretrained(model_path)
if getattr(config, "model_type") == "qwen2_5_omni":
from transformers.models.qwen2_5_omni import Qwen2_5OmniThinkerForConditionalGeneration # type: ignore
ThinkerClass = Qwen2_5OmniThinkerForConditionalGeneration
elif getattr(config, "model_type") == "qwen3_omni_moe":
from transformers.models.qwen3_omni_moe import Qwen3OmniMoeThinkerForConditionalGeneration # type: ignore
ThinkerClass = Qwen3OmniMoeThinkerForConditionalGeneration
else:
raise ValueError(f"Unsupported model type: {getattr(config, 'model_type')}.")
thinker = ThinkerClass.from_pretrained(thinker_path, torch_dtype="auto", device_map="cpu")
base_model = AutoModelForTextToWaveform.from_pretrained(model_path, torch_dtype="auto", device_map="cpu")
base_model.thinker = thinker
processor = AutoProcessor.from_pretrained(thinker_path)
print("Successfully loaded model weights and processor.")
# 2. Save the complete model along with its tokenizer and processor configuration
processor = AutoProcessor.from_pretrained(saved_thinker_path)
base_model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Merged model and processor saved to {save_path}.")
# 3. Copy the extra file from the base model directory to the save_path
source_file = os.path.join(base_model_path, extra_file)
target_file = os.path.join(save_path, extra_file)
if os.path.exists(source_file):
shutil.copy(source_file, target_file)
print(f"File '{extra_file}' copied from {base_model_path} to {save_path}.")
else:
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
try:
source_file = cached_file(path_or_repo_id=model_path, filename=extra_file)
shutil.copy(source_file, os.path.join(save_path, extra_file))
print(f"File '{extra_file}' copied from {model_path} to {save_path}.")
except Exception:
print(f"File '{extra_file}' not found in {model_path}, skipping copy.")
if __name__ == "__main__":

View File

@@ -43,7 +43,7 @@ def get_console_scripts() -> list[str]:
extra_require = {
"torch": ["torch>=2.0.0", "torchvision>=0.15.0"],
"torch-npu": ["torch==2.4.0", "torch-npu==2.4.0.post2", "decorator"],
"torch-npu": ["torch-npu==2.5.1", "torchvision==0.20.1", "decorator"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0,<=0.16.9"],
"liger-kernel": ["liger-kernel>=0.5.5"],
@@ -52,7 +52,7 @@ extra_require = {
"eetq": ["eetq"],
"gptq": ["optimum>=1.24.0", "gptqmodel>=2.0.0"],
"aqlm": ["aqlm[gpu]>=1.1.0"],
"vllm": ["vllm>=0.4.3,<=0.8.6"],
"vllm": ["vllm>=0.4.3,<=0.10.2"],
"sglang": ["sglang[srt]>=0.4.5", "transformers==4.51.1"],
"galore": ["galore-torch"],
"apollo": ["apollo-torch"],
@@ -68,9 +68,11 @@ extra_require = {
"referencing",
"jsonschema_specifications",
],
"modelscope": ["modelscope"],
"openmind": ["openmind"],
"swanlab": ["swanlab"],
"fp8": ["torchao>=0.8.0", "accelerate>=1.10.0"],
"fp8-te": ["transformer_engine[pytorch]>=2.0.0", "accelerate>=1.10.0"],
"fp8-all": ["torchao>=0.8.0", "transformer_engine[pytorch]>=2.0.0", "accelerate>=1.10.0"],
"dev": ["pre-commit", "ruff", "pytest", "build"],
}

View File

@@ -132,7 +132,7 @@ def _process_request(
if re.match(r"^data:video\/(mp4|mkv|avi|mov);base64,(.+)$", video_url): # base64 video
video_stream = io.BytesIO(base64.b64decode(video_url.split(",", maxsplit=1)[1]))
elif os.path.isfile(video_url): # local file
video_stream = open(video_url, "rb")
video_stream = video_url
else: # web uri
video_stream = requests.get(video_url, stream=True).raw
@@ -143,7 +143,7 @@ def _process_request(
if re.match(r"^data:audio\/(mpeg|mp3|wav|ogg);base64,(.+)$", audio_url): # base64 audio
audio_stream = io.BytesIO(base64.b64decode(audio_url.split(",", maxsplit=1)[1]))
elif os.path.isfile(audio_url): # local file
audio_stream = open(audio_url, "rb")
audio_stream = audio_url
else: # web uri
audio_stream = requests.get(audio_url, stream=True).raw

View File

@@ -24,9 +24,6 @@ from typing import TYPE_CHECKING, Any, Optional
from ..extras.constants import EngineName
from ..extras.misc import torch_gc
from ..hparams import get_infer_args
from .hf_engine import HuggingfaceEngine
from .sglang_engine import SGLangEngine
from .vllm_engine import VllmEngine
if TYPE_CHECKING:
@@ -49,12 +46,31 @@ class ChatModel:
def __init__(self, args: Optional[dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
if model_args.infer_backend == EngineName.HF:
from .hf_engine import HuggingfaceEngine
self.engine: BaseEngine = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
elif model_args.infer_backend == EngineName.VLLM:
try:
from .vllm_engine import VllmEngine
self.engine: BaseEngine = VllmEngine(model_args, data_args, finetuning_args, generating_args)
except ImportError as e:
raise ImportError(
"vLLM not install, you may need to run `pip install vllm`\n"
"or try to use HuggingFace backend: --infer_backend huggingface"
) from e
elif model_args.infer_backend == EngineName.SGLANG:
try:
from .sglang_engine import SGLangEngine
self.engine: BaseEngine = SGLangEngine(model_args, data_args, finetuning_args, generating_args)
except ImportError as e:
raise ImportError(
"SGLang not install, you may need to run `pip install sglang[all]`\n"
"or try to use HuggingFace backend: --infer_backend huggingface"
) from e
else:
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")

View File

@@ -25,26 +25,26 @@ USAGE = (
+ "| Usage: |\n"
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
+ "| llamafactory-cli eval -h: evaluate models |\n"
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
+ "| llamafactory-cli train -h: train models |\n"
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
+ "| llamafactory-cli env: show environment info |\n"
+ "| llamafactory-cli version: show version info |\n"
+ "| Hint: You can use `lmf` as a shortcut for `llamafactory-cli`. |\n"
+ "-" * 70
)
def main():
from . import launcher
from .api.app import run_api
from .chat.chat_model import run_chat
from .eval.evaluator import run_eval
from .extras import logging
from .extras.env import VERSION, print_env
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
from .train.tuner import export_model, run_exp
from .webui.interface import run_web_demo, run_web_ui
if is_env_enabled("USE_V1"):
from .v1 import launcher
else:
from . import launcher
logger = logging.get_logger(__name__)
@@ -61,14 +61,14 @@ def main():
)
COMMAND_MAP = {
"api": run_api,
"chat": run_chat,
"api": launcher.run_api,
"chat": launcher.run_chat,
"env": print_env,
"eval": run_eval,
"export": export_model,
"train": run_exp,
"webchat": run_web_demo,
"webui": run_web_ui,
"eval": launcher.run_eval,
"export": launcher.export_model,
"train": launcher.run_exp,
"webchat": launcher.run_web_demo,
"webui": launcher.run_web_ui,
"version": partial(print, WELCOME),
"help": partial(print, USAGE),
}

View File

@@ -194,7 +194,7 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
elif "video_second_per_grid" in mm_inputs: # for qwen2.5 omni
rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid")
if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker": # for qwen2.5 omni
if getattr(self.model.config, "model_type", None) in ["qwen2_5_omni_thinker", "qwen3_omni_moe_thinker"]:
rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False)
feature_attention_mask = mm_inputs.get("feature_attention_mask", None)
if feature_attention_mask is not None: # FIXME: need to get video image lengths
@@ -205,15 +205,25 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
features["rope_deltas"] = rope_deltas - (1 - rope_index_kwargs["attention_mask"]).sum(
dim=-1
).unsqueeze(-1)
else: # for qwen2vl
else: # for qwen vl
features["position_ids"], features["rope_deltas"] = self.get_rope_func(**rope_index_kwargs)
if (
self.model is not None
and getattr(self.model.config, "model_type", None) in ["qwen2_vl", "qwen2_5_vl", "qwen2_5_omni_thinker"]
and getattr(self.model.config, "model_type", None)
in [
"glm4v",
"Keye",
"qwen2_vl",
"qwen2_5_vl",
"qwen2_5_omni_thinker",
"qwen3_omni_moe_thinker",
"qwen3_vl",
"qwen3_vl_moe",
]
and ("position_ids" not in features or features["position_ids"].dim() != 3)
):
raise ValueError("Qwen2-VL/Qwen2.5-Omni model requires 3D position ids for mrope.")
raise ValueError(f"{self.model.config.model_type} requires 3D position ids for mrope.")
if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled
cross_attention_mask = mm_inputs.pop("cross_attention_mask")

View File

@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from abc import abstractmethod
from dataclasses import dataclass
@@ -227,9 +227,150 @@ class SharegptDatasetConverter(DatasetConverter):
return output
@dataclass
class OpenAIDatasetConverter(DatasetConverter):
def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
tag_mapping = {
self.dataset_attr.user_tag: Role.USER.value,
self.dataset_attr.assistant_tag: Role.ASSISTANT.value,
self.dataset_attr.observation_tag: Role.OBSERVATION.value,
self.dataset_attr.function_tag: Role.FUNCTION.value,
self.dataset_attr.system_tag: Role.SYSTEM.value,
}
messages = example[self.dataset_attr.messages]
if (
self.dataset_attr.system_tag
and len(messages) != 0
and messages[0][self.dataset_attr.role_tag] == self.dataset_attr.system_tag
):
system = messages[0][self.dataset_attr.content_tag]
messages = messages[1:]
else:
system = example.get(self.dataset_attr.system, "") if self.dataset_attr.system else ""
aligned_messages = []
tool_responses = []
broken_data = False
for turn_idx, message in enumerate(messages):
role = message[self.dataset_attr.role_tag]
content = message[self.dataset_attr.content_tag]
if role in [self.dataset_attr.assistant_tag, self.dataset_attr.function_tag]:
if "tool_calls" in message and len(message["tool_calls"]) > 0:
tool_calls_list = [tool["function"] for tool in message["tool_calls"]]
content = json.dumps(tool_calls_list, ensure_ascii=False)
role = self.dataset_attr.function_tag
if role == self.dataset_attr.observation_tag:
tool_responses.append(content)
continue
elif len(tool_responses) > 0:
_content = "\n</tool_response>\n<tool_response>\n".join(tool_responses)
aligned_messages.append(
{
"role": Role.OBSERVATION.value,
"content": _content,
}
)
tool_responses = []
aligned_messages.append(
{
"role": tag_mapping[role],
"content": content,
}
)
odd_tags = (Role.USER.value, Role.OBSERVATION.value)
even_tags = (Role.ASSISTANT.value, Role.FUNCTION.value)
accept_tags = (odd_tags, even_tags)
for turn_idx, message in enumerate(aligned_messages):
if message["role"] not in accept_tags[turn_idx % 2]:
logger.warning_rank0(f"Invalid role tag in {messages}.")
broken_data = True
break
if (not self.dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
self.dataset_attr.ranking and len(aligned_messages) % 2 == 0
):
logger.warning_rank0(f"Invalid message count in {messages}.")
broken_data = True
if broken_data:
logger.warning_rank0("Skipping this abnormal example.")
prompt, response = [], []
elif self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool): # kto example
prompt = aligned_messages[:-1]
response = aligned_messages[-1:]
if example[self.dataset_attr.kto_tag]:
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
else:
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
elif (
self.dataset_attr.ranking
and isinstance(example[self.dataset_attr.chosen], dict)
and isinstance(example[self.dataset_attr.rejected], dict)
): # pairwise example
chosen = example[self.dataset_attr.chosen]
rejected = example[self.dataset_attr.rejected]
if (
chosen[self.dataset_attr.role_tag] not in accept_tags[-1]
or rejected[self.dataset_attr.role_tag] not in accept_tags[-1]
):
logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
broken_data = True
prompt = aligned_messages
response = [
{
"role": tag_mapping[chosen[self.dataset_attr.role_tag]],
"content": chosen[self.dataset_attr.content_tag],
},
{
"role": tag_mapping[rejected[self.dataset_attr.role_tag]],
"content": rejected[self.dataset_attr.content_tag],
},
]
else: # normal example
prompt = aligned_messages[:-1]
response = aligned_messages[-1:]
tools = example.get(self.dataset_attr.tools, "") if self.dataset_attr.tools else ""
if isinstance(tools, dict) or isinstance(tools, list):
tools = json.dumps(tools, ensure_ascii=False)
short_system_prompt = "detailed thinking off"
if not system:
if not tools:
system = short_system_prompt
else:
pass
else:
if not tools:
if "detailed thinking on" in system or "detailed thinking off" in system:
pass
else:
system += "\n" + short_system_prompt
else:
system += "\n"
output = {
"_prompt": prompt,
"_response": response,
"_system": system,
"_tools": tools,
"_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
"_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
"_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
}
return output
DATASET_CONVERTERS = {
"alpaca": AlpacaDatasetConverter,
"sharegpt": SharegptDatasetConverter,
"openai": OpenAIDatasetConverter,
}

View File

@@ -97,8 +97,11 @@ class FunctionFormatter(StringFormatter):
@override
def apply(self, **kwargs) -> SLOTS:
content: str = kwargs.pop("content")
regex = re.compile(r"<think>(.*)</think>", re.DOTALL)
thought_words, thought = kwargs.pop("thought_words", None), None
if thought_words and len(thought_words) == 2:
regex = re.compile(rf"{re.escape(thought_words[0])}(.*?){re.escape(thought_words[1])}", re.DOTALL)
thought = re.search(regex, content)
if thought:
content = content.replace(thought.group(0), "")

View File

@@ -91,7 +91,7 @@ def _load_single_dataset(
raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
if dataset_attr.load_from == "ms_hub":
check_version("modelscope>=1.11.0", mandatory=True)
check_version("modelscope>=1.14.0", mandatory=True)
from modelscope import MsDataset # type: ignore
from modelscope.utils.config_ds import MS_DATASETS_CACHE # type: ignore

View File

@@ -27,6 +27,10 @@ from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
import numpy as np
import torch
from transformers.image_utils import get_image_size, is_valid_image, to_numpy_array
from transformers.models.mllama.processing_mllama import (
convert_sparse_cross_attention_mask_to_dense,
get_cross_attention_token_mask,
)
from typing_extensions import override
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
@@ -51,17 +55,10 @@ if is_pyav_available():
import av
if is_transformers_version_greater_than("4.45.0"):
from transformers.models.mllama.processing_mllama import (
convert_sparse_cross_attention_mask_to_dense,
get_cross_attention_token_mask,
)
if is_transformers_version_greater_than("4.52.0"):
from transformers.image_utils import make_flat_list_of_images
from transformers.video_utils import make_batched_videos
elif is_transformers_version_greater_than("4.49.0"):
else:
from transformers.image_utils import make_batched_videos, make_flat_list_of_images
@@ -137,7 +134,7 @@ def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> lis
def _check_video_is_nested_images(video: "VideoInput") -> bool:
r"""Check if the video is nested images."""
return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict)) for frame in video)
return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict, ImageObject)) for frame in video)
@dataclass
@@ -298,11 +295,8 @@ class MMPluginMixin:
r"""Regularizes audios to avoid error. Including reading and resampling."""
results, sampling_rates = [], []
for audio in audios:
if isinstance(audio, (str, BinaryIO)):
audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
if not isinstance(audio, np.ndarray):
raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")
audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
results.append(audio)
sampling_rates.append(sampling_rate)
@@ -391,7 +385,7 @@ class MMPluginMixin:
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask", None) # prevent conflicts
return mm_inputs
@@ -512,6 +506,39 @@ class Gemma3Plugin(BasePlugin):
return mm_inputs
class Gemma3nPlugin(Gemma3Plugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
messages = deepcopy(messages)
boi_token: str = getattr(processor, "boi_token")
boa_token: str = getattr(processor, "boa_token")
full_image_sequence: str = getattr(processor, "full_image_sequence")
full_audio_sequence: str = getattr(processor, "full_audio_sequence")
image_str = full_image_sequence if self.expand_mm_tokens else boi_token
audio_str = full_audio_sequence if self.expand_mm_tokens else boa_token
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, image_str, 1)
while AUDIO_PLACEHOLDER in content:
content = content.replace(AUDIO_PLACEHOLDER, audio_str, 1)
message["content"] = content
return messages
@dataclass
class InternVLPlugin(BasePlugin):
@override
@@ -1370,6 +1397,9 @@ class Qwen2AudioPlugin(BasePlugin):
@dataclass
class Qwen2VLPlugin(BasePlugin):
vision_bos_token: str = "<|vision_start|>"
vision_eos_token: str = "<|vision_end|>"
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
image = super()._preprocess_image(image, **kwargs)
@@ -1485,14 +1515,18 @@ class Qwen2VLPlugin(BasePlugin):
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
IMAGE_PLACEHOLDER,
f"{self.vision_bos_token}{self.image_token * image_seqlen}{self.vision_eos_token}",
1,
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
VIDEO_PLACEHOLDER,
f"{self.vision_bos_token}{self.video_token * video_seqlen}{self.vision_eos_token}",
1,
)
num_video_tokens += 1
@@ -1501,7 +1535,259 @@ class Qwen2VLPlugin(BasePlugin):
return messages
@dataclass
class Qwen3VLPlugin(Qwen2VLPlugin):
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseImageProcessor = getattr(processor, "video_processor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
video_metadata = [
{"fps": getattr(processor, "video_fps", 24.0), "duration": len(video), "total_num_frames": len(video)}
for video in videos["videos"]
]
mm_inputs.update(
video_processor(videos=videos["videos"], video_metadata=video_metadata, return_metadata=True)
)
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
if "second_per_grid_ts" in processor.model_input_names:
mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in videos["fps_per_video"]]
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
video_processor: BaseImageProcessor = getattr(processor, "video_processor")
image_merge_length: int = getattr(image_processor, "merge_size") ** 2
video_merge_length: int = getattr(video_processor, "merge_size") ** 2
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
num_frames = video_grid_thw[0][0] if len(video_grid_thw) > 0 else 0 # hard code for now
video_metadata = mm_inputs.get("video_metadata", {})
else:
image_grid_thw = [None] * len(images)
video_grid_thw = [None] * len(videos)
num_frames = 0
timestamps = [0]
for idx, message in enumerate(messages):
content = message["content"]
while IMAGE_PLACEHOLDER in content:
image_seqlen = (
image_grid_thw[num_image_tokens].prod() // image_merge_length if self.expand_mm_tokens else 1
)
content = content.replace(
IMAGE_PLACEHOLDER,
f"{self.vision_bos_token}{self.image_token * image_seqlen}{self.vision_eos_token}",
1,
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
metadata = video_metadata[idx]
timestamps = processor._calculate_timestamps(
metadata.frames_indices,
metadata.fps,
video_processor.merge_size,
)
video_structure = ""
for frame_index in range(num_frames):
video_seqlen = (
video_grid_thw[num_video_tokens][1:].prod() // video_merge_length
if self.expand_mm_tokens
else 1
)
timestamp_sec = timestamps[frame_index]
frame_structure = (
f"<{timestamp_sec:.1f} seconds>"
f"{self.vision_bos_token}{self.video_token * video_seqlen}{self.vision_eos_token}"
)
video_structure += frame_structure
if not self.expand_mm_tokens:
video_structure = f"{self.vision_bos_token}{self.video_token}{self.vision_eos_token}"
content = content.replace(VIDEO_PLACEHOLDER, video_structure, 1)
num_video_tokens += 1
message["content"] = content
return messages
@dataclass
class GLM4VPlugin(Qwen2VLPlugin):
@override
def _get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseImageProcessor = getattr(processor, "video_processor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
)["images"]
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
video_data = self._regularize_videos(
videos,
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
# prepare video metadata
video_metadata = [
{"fps": 2, "duration": len(video), "total_frames": len(video)} for video in video_data["videos"]
]
mm_inputs.update(video_processor(images=None, videos=video_data["videos"], video_metadata=video_metadata))
return mm_inputs
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
num_frames = video_grid_thw[0][0] if len(video_grid_thw) > 0 else 0 # hard code for now
timestamps = mm_inputs.get("timestamps", [])
if hasattr(timestamps, "tolist"):
timestamps = timestamps.tolist()
if not timestamps:
timestamps_list = []
elif isinstance(timestamps[0], list):
timestamps_list = timestamps[0]
else:
timestamps_list = timestamps
unique_timestamps = timestamps_list.copy()
selected_timestamps = unique_timestamps[:num_frames]
while len(selected_timestamps) < num_frames:
selected_timestamps.append(selected_timestamps[-1] if selected_timestamps else 0)
else:
image_grid_thw = [None] * len(images)
video_grid_thw = [None] * len(videos)
num_frames = 0
selected_timestamps = [0]
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER, f"<|begin_of_image|>{self.image_token * image_seqlen}<|end_of_image|>", 1
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
video_structure = ""
for frame_index in range(num_frames):
video_seqlen = (
video_grid_thw[num_video_tokens][1:].prod() // merge_length if self.expand_mm_tokens else 1
)
timestamp_sec = selected_timestamps[frame_index]
frame_structure = (
f"<|begin_of_image|>{self.image_token * video_seqlen}<|end_of_image|>{timestamp_sec}"
)
video_structure += frame_structure
if not self.expand_mm_tokens:
video_structure = self.video_token
content = content.replace(VIDEO_PLACEHOLDER, f"<|begin_of_video|>{video_structure}<|end_of_video|>", 1)
num_video_tokens += 1
message["content"] = content
return messages
@override
def get_mm_inputs(
self,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["ProcessorMixin"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs.pop("timestamps", None)
return mm_inputs
@dataclass
class Qwen2OmniPlugin(Qwen2VLPlugin):
audio_bos_token: str = "<|audio_start|>"
audio_eos_token: str = "<|audio_end|>"
@override
def _get_mm_inputs(
self,
@@ -1588,7 +1874,9 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER, f"<|vision_bos|>{self.image_token * image_seqlen}<|vision_eos|>", 1
IMAGE_PLACEHOLDER,
f"{self.vision_bos_token}{self.image_token * image_seqlen}{self.vision_eos_token}",
1,
)
num_image_tokens += 1
@@ -1625,7 +1913,7 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
audio_chunk_indices = processor.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
placeholder_string = ""
placeholder_string += "<|vision_bos|>" + "<|audio_bos|>"
placeholder_string += self.vision_bos_token + self.audio_bos_token
for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
@@ -1635,7 +1923,7 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
if audio_chunk_index is not None:
placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])
placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"
placeholder_string += self.audio_eos_token + self.vision_eos_token
content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
content = content.replace(AUDIO_PLACEHOLDER, "", 1)
num_audio_tokens += 1
@@ -1644,7 +1932,9 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
while AUDIO_PLACEHOLDER in content:
audio_seqlen = audio_lengths[num_audio_tokens] if self.expand_mm_tokens else 1
content = content.replace(
AUDIO_PLACEHOLDER, f"<|audio_bos|>{self.audio_token * audio_seqlen}<|audio_eos|>", 1
AUDIO_PLACEHOLDER,
f"{self.audio_bos_token}{self.audio_token * audio_seqlen}{self.audio_eos_token}",
1,
)
num_audio_tokens += 1
@@ -1653,7 +1943,9 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
)
content = content.replace(
VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_seqlen}<|vision_eos|>", 1
VIDEO_PLACEHOLDER,
f"{self.vision_bos_token}{self.video_token * video_seqlen}{self.vision_eos_token}",
1,
)
num_video_tokens += 1
@@ -1718,6 +2010,8 @@ class VideoLlavaPlugin(BasePlugin):
PLUGINS = {
"base": BasePlugin,
"gemma3": Gemma3Plugin,
"glm4v": GLM4VPlugin,
"gemma3n": Gemma3nPlugin,
"intern_vl": InternVLPlugin,
"kimi_vl": KimiVLPlugin,
"llama4": Llama4Plugin,
@@ -1731,6 +2025,7 @@ PLUGINS = {
"qwen2_audio": Qwen2AudioPlugin,
"qwen2_omni": Qwen2OmniPlugin,
"qwen2_vl": Qwen2VLPlugin,
"qwen3_vl": Qwen3VLPlugin,
"video_llava": VideoLlavaPlugin,
}
@@ -1748,9 +2043,10 @@ def get_mm_plugin(
image_token: Optional[str] = None,
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
**kwargs,
) -> "BasePlugin":
r"""Get plugin for multimodal inputs."""
if name not in PLUGINS:
raise ValueError(f"Multimodal plugin `{name}` not found.")
return PLUGINS[name](image_token, video_token, audio_token)
return PLUGINS[name](image_token, video_token, audio_token, **kwargs)

View File

@@ -15,7 +15,7 @@
import json
import os
from dataclasses import dataclass
from typing import Any, Literal, Optional
from typing import Any, Literal, Optional, Union
from huggingface_hub import hf_hub_download
@@ -90,12 +90,14 @@ class DatasetAttr:
self.set_attr(tag, attr["tags"])
def get_dataset_list(dataset_names: Optional[list[str]], dataset_dir: str) -> list["DatasetAttr"]:
def get_dataset_list(dataset_names: Optional[list[str]], dataset_dir: Union[str, dict]) -> list["DatasetAttr"]:
r"""Get the attributes of the datasets."""
if dataset_names is None:
dataset_names = []
if dataset_dir == "ONLINE":
if isinstance(dataset_dir, dict):
dataset_info = dataset_dir
elif dataset_dir == "ONLINE":
dataset_info = None
else:
if dataset_dir.startswith("REMOTE:"):

View File

@@ -62,7 +62,7 @@ class SupervisedDatasetProcessor(DatasetProcessor):
if self.data_args.train_on_prompt:
source_label = source_ids
elif self.template.efficient_eos:
elif self.template.efficient_eos and turn_idx != 0:
source_label = [self.tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1)
else:
source_label = [IGNORE_INDEX] * source_len

View File

@@ -96,7 +96,7 @@ class Template:
def add_thought(self, content: str = "") -> str:
r"""Add empty thought to assistant message."""
return f"{self.thought_words[0]}\n\n{self.thought_words[1]}\n\n" + content
return f"{self.thought_words[0]}{self.thought_words[1]}" + content
def remove_thought(self, content: str) -> str:
r"""Remove thought from assistant message."""
@@ -156,7 +156,7 @@ class Template:
elif message["role"] == Role.OBSERVATION:
elements += self.format_observation.apply(content=message["content"])
elif message["role"] == Role.FUNCTION:
elements += self.format_function.apply(content=message["content"])
elements += self.format_function.apply(content=message["content"], thought_words=self.thought_words)
else:
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
@@ -416,8 +416,8 @@ class ReasoningTemplate(Template):
prompt_ids, response_ids = super().encode_oneturn(tokenizer, messages, system, tools)
if (
self.thought_words[0] not in messages[-1]["content"]
and self.thought_words[1] not in messages[-1]["content"]
self.thought_words[0].strip() not in messages[-1]["content"]
and self.thought_words[1].strip() not in messages[-1]["content"]
): # add empty cot
if not self.enable_thinking: # do not compute loss
prompt_ids += self.get_thought_word_ids(tokenizer)
@@ -442,8 +442,8 @@ class ReasoningTemplate(Template):
encoded_messages = self._encode(tokenizer, messages, system, tools)
for i in range(0, len(messages), 2):
if (
self.thought_words[0] not in messages[i + 1]["content"]
and self.thought_words[1] not in messages[i + 1]["content"]
self.thought_words[0].strip() not in messages[i + 1]["content"]
and self.thought_words[1].strip() not in messages[i + 1]["content"]
): # add empty cot
if not self.enable_thinking: # do not compute loss
encoded_messages[i] += self.get_thought_word_ids(tokenizer)
@@ -518,7 +518,7 @@ def register_template(
format_prefix=format_prefix or default_prefix_formatter,
default_system=default_system,
stop_words=stop_words or [],
thought_words=thought_words or ("<think>", "</think>"),
thought_words=thought_words or ("<think>\n", "\n</think>\n\n"),
efficient_eos=efficient_eos,
replace_eos=replace_eos,
replace_jinja_template=replace_jinja_template,
@@ -579,7 +579,7 @@ def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template":
format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(),
default_system=default_system,
stop_words=[],
thought_words=("<think>", "</think>"),
thought_words=("<think>\n", "\n</think>\n\n"),
efficient_eos=False,
replace_eos=False,
replace_jinja_template=False,
@@ -679,6 +679,23 @@ register_template(
)
register_template(
name="bailing_v2",
format_user=StringFormatter(slots=["<role>HUMAN</role>{{content}}<|role_end|><role>ASSISTANT</role>"]),
format_system=StringFormatter(slots=["<role>SYSTEM</role>{{content}}<|role_end|>"]),
format_assistant=StringFormatter(slots=["{{content}}<|role_end|>"]),
format_observation=StringFormatter(
slots=[
"<role>OBSERVATION</role>\n<tool_response>\n{{content}}\n</tool_response><|role_end|><role>ASSISTANT</role>"
]
),
format_function=FunctionFormatter(slots=["{{content}}<|role_end|>"], tool_format="ling"),
format_tools=ToolFormatter(tool_format="ling"),
stop_words=["<|endoftext|>"],
efficient_eos=True,
)
register_template(
name="belle",
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]),
@@ -894,12 +911,51 @@ register_template(
)
register_template(
name="dots_ocr",
format_user=StringFormatter(slots=["<|user|>{{content}}<|endofuser|><|assistant|>"]),
format_assistant=StringFormatter(slots=["{{content}}<|endofassistant|>"]),
format_system=StringFormatter(slots=["<|system|>{{content}}<|endofsystem|>\n"]),
stop_words=["<|endofassistant|>"],
efficient_eos=True,
mm_plugin=get_mm_plugin(
name="qwen2_vl",
image_token="<|imgpad|>",
video_token="<|vidpad|>",
vision_bos_token="<|img|>",
vision_eos_token="<|endofimg|>",
),
)
register_template(
name="empty",
format_assistant=StringFormatter(slots=["{{content}}"]),
)
# copied from chatml template
register_template(
name="ernie",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n\n<|im_start|>assistant\n"]),
default_system="<global_setting>\nthink_mode=True\n</global_setting>",
stop_words=["<|im_end|>"],
)
register_template(
name="ernie_nothink",
format_user=StringFormatter(slots=["User: {{content}}\nAssistant: "]),
format_assistant=StringFormatter(slots=["{{content}}<|end_of_sentence|>"]),
format_system=StringFormatter(slots=["{{content}}\n"]),
format_prefix=EmptyFormatter(slots=["<|begin_of_sentence|>"]),
stop_words=["<|end_of_sentence|>"],
)
register_template(
name="exaone",
format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]),
@@ -916,6 +972,18 @@ register_template(
)
# copied from chatml template
register_template(
name="falcon_h1",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<|im_end|>", "<|end_of_text|>"],
)
register_template(
name="fewshot",
format_assistant=StringFormatter(slots=["{{content}}\n\n"]),
@@ -939,6 +1007,22 @@ register_template(
)
# copied from gemma template
register_template(
name="gemma2",
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\n"]),
format_system=StringFormatter(slots=["{{content}}\n\n"]),
format_observation=StringFormatter(
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<eos>", "<end_of_turn>"],
efficient_eos=True,
template_class=Llama2Template,
)
# copied from gemma template
register_template(
name="gemma3",
@@ -956,6 +1040,22 @@ register_template(
)
register_template(
name="gemma3n",
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\n"]),
format_system=StringFormatter(slots=["{{content}}\n\n"]),
format_observation=StringFormatter(
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<end_of_turn>"],
replace_eos=True,
mm_plugin=get_mm_plugin("gemma3n", image_token="<image_soft_token>", audio_token="<audio_soft_token>"),
template_class=Llama2Template,
)
register_template(
name="glm4",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
@@ -970,6 +1070,56 @@ register_template(
)
# copied from glm4 template
register_template(
name="glm4_moe",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}"]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4_moe"),
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
format_tools=ToolFormatter(tool_format="glm4_moe"),
format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
stop_words=["<|user|>", "<|observation|>"],
efficient_eos=True,
template_class=ReasoningTemplate,
)
# copied from glm4 template
register_template(
name="glm4v",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}"]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
format_tools=ToolFormatter(tool_format="glm4"),
format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
stop_words=["<|user|>", "<|observation|>", "</answer>"],
efficient_eos=True,
mm_plugin=get_mm_plugin(name="glm4v", image_token="<|image|>", video_token="<|video|>"),
template_class=ReasoningTemplate,
)
# copied from glm4 template
register_template(
name="glm4v_moe",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}"]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4_moe"),
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
format_tools=ToolFormatter(tool_format="glm4_moe"),
format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
stop_words=["<|user|>", "<|observation|>", "</answer>"],
efficient_eos=True,
mm_plugin=get_mm_plugin(name="glm4v", image_token="<|image|>", video_token="<|video|>"),
template_class=ReasoningTemplate,
)
# copied from glm4 template
register_template(
name="glmz1",
@@ -986,6 +1136,18 @@ register_template(
)
register_template(
name="gpt",
format_user=StringFormatter(slots=["<|start|>user<|message|>{{content}}<|end|><|start|>assistant"]),
format_assistant=StringFormatter(slots=["{{content}}<|end|>"]),
format_system=StringFormatter(slots=["<|start|>system<|message|>{{content}}<|end|>"]),
default_system="You are ChatGPT, a large language model trained by OpenAI.",
thought_words=("<|channel|>analysis<|message|>", "<|end|><|start|>assistant<|channel|>final<|message|>"),
efficient_eos=True,
template_class=ReasoningTemplate,
)
register_template(
name="granite3",
format_user=StringFormatter(
@@ -1010,6 +1172,25 @@ register_template(
)
register_template(
name="granite4",
format_user=StringFormatter(
slots=[
"<|start_of_role|>user<|end_of_role|>{{content}}<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>"
]
),
format_assistant=StringFormatter(slots=["{{content}}<|end_of_text|>\n"]),
format_system=StringFormatter(slots=["<|start_of_role|>system<|end_of_role|>{{content}}<|end_of_text|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|end_of_text|>\n"], tool_format="default"),
format_observation=StringFormatter(
slots=["<|start_of_role|>tool<|end_of_role|>{{content}}<|end_of_text|>\n<|start_of_role|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="default"),
stop_words=["<|end_of_text|>"],
default_system="You are Granite, developed by IBM. You are a helpful AI assistant.",
)
register_template(
name="index",
format_user=StringFormatter(slots=["reserved_0{{content}}reserved_1"]),
@@ -1076,6 +1257,35 @@ register_template(
)
register_template(
name="intern_s1",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<|im_end|>"],
mm_plugin=get_mm_plugin(name="intern_vl", image_token="<image>", video_token="<video>"),
)
# copied from qwen template
register_template(
name="keye_vl",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
template_class=ReasoningTemplate,
)
register_template(
name="kimi_vl",
format_user=StringFormatter(
@@ -1409,7 +1619,7 @@ register_template(
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
stop_words=["<|im_end|>"],
default_system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
default_system="You are a helpful assistant. You can accept audio and text input and output voice and text.",
mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>", audio_token="<audio>"),
)
@@ -1608,6 +1818,22 @@ register_template(
)
# copied from qwen template
register_template(
name="qwen3_nothink",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
)
# copied from chatml template
register_template(
name="qwen2_audio",
@@ -1636,10 +1862,55 @@ register_template(
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(
name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>"
name="qwen2_omni",
image_token="<|IMAGE|>",
video_token="<|VIDEO|>",
audio_token="<|AUDIO|>",
vision_bos_token="<|vision_bos|>",
vision_eos_token="<|vision_eos|>",
audio_bos_token="<|audio_bos|>",
audio_eos_token="<|audio_eos|>",
),
)
register_template(
name="qwen3_omni",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(
name="qwen2_omni", image_token="<|image_pad|>", video_token="<|video_pad|>", audio_token="<|audio_pad|>"
),
template_class=ReasoningTemplate,
)
register_template(
name="qwen3_omni_nothink",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(
name="qwen2_omni", image_token="<|image_pad|>", video_token="<|video_pad|>", audio_token="<|audio_pad|>"
),
)
# copied from qwen template
register_template(
name="qwen2_vl",
@@ -1658,6 +1929,41 @@ register_template(
)
# copied from qwen template
register_template(
name="qwen3_vl",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="qwen3_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
template_class=ReasoningTemplate,
)
# copied from qwen template
register_template(
name="qwen3_vl_nothink",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="qwen3_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
)
register_template(
name="sailor",
format_user=StringFormatter(slots=["<|im_start|>question\n{{content}}<|im_end|>\n<|im_start|>answer\n"]),
@@ -1685,6 +1991,20 @@ register_template(
)
# copied from seed_coder
register_template(
name="seed_oss",
format_user=StringFormatter(
slots=[{"bos_token"}, "user\n{{content}}", {"eos_token"}, {"bos_token"}, "assistant\n"]
),
format_system=StringFormatter(slots=[{"bos_token"}, "system\n{{content}}", {"eos_token"}]),
format_function=FunctionFormatter(slots=[{"bos_token"}, "\n{{content}}", {"eos_token"}], tool_format="seed_oss"),
format_tools=ToolFormatter(tool_format="seed_oss"),
template_class=ReasoningTemplate,
thought_words=("<seed:think>", "</seed:think>"),
)
# copied from llama3 template
register_template(
name="skywork_o1",

View File

@@ -38,8 +38,20 @@ DEFAULT_TOOL_PROMPT = (
)
GLM4_TOOL_PROMPT = (
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具{tool_text}"
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱 AI 公司训练的语言模型 GLM-4 模型开发的,"
"你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{tool_text}"
)
GLM4_MOE_TOOL_PROMPT = (
"\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>{tool_text}"
"\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:"
"\n<tool_call>{{function-name}}"
"\n<arg_key>{{arg-key-1}}</arg_key>"
"\n<arg_value>{{arg-value-1}}</arg_value>"
"\n<arg_key>{{arg-key-2}}</arg_key>"
"\n<arg_value>{{arg-value-2}}</arg_value>"
"\n...\n</tool_call>\n"
)
LLAMA3_TOOL_PROMPT = (
@@ -57,6 +69,23 @@ QWEN_TOOL_PROMPT = (
""""arguments": <args-json-object>}}\n</tool_call>"""
)
SEED_TOOL_PROMPT = (
"system\nYou are Doubao, a helpful AI assistant. You may call one or more functions to assist with the user query."
"Tool List:\nYou are authorized to use the following tools (described in JSON Schema format). Before performing "
"any task, you must decide how to call them based on the descriptions and parameters of these tools.{tool_text}\n"
"工具调用请遵循如下格式:\n<seed:tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>value_1"
"</parameter>\n<parameter=example_parameter_2>This is the value for the second parameter\nthat can span\nmultiple "
"lines</parameter>\n</function>\n</seed:tool_call>\n"
)
LING_TOOL_PROMPT = (
"# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>{tool_text}"
"\n</tools>\n\nFor each function call, return a json object with function name and arguments within "
"""<tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": <function-name>, """
""""arguments": <args-json-object>}}\n</tool_call>"""
)
@dataclass
class ToolUtils(ABC):
@@ -303,12 +332,111 @@ class QwenToolUtils(ToolUtils):
return results
class GLM4MOEToolUtils(QwenToolUtils):
r"""GLM-4-MOE tool using template."""
@override
@staticmethod
def tool_formatter(tools: list[dict[str, Any]]) -> str:
tool_text = ""
for tool in tools:
wrapped_tool = tool if tool.get("type") == "function" else {"type": "function", "function": tool}
tool_text += "\n" + json.dumps(wrapped_tool, ensure_ascii=False)
return GLM4_MOE_TOOL_PROMPT.format(tool_text=tool_text)
@override
@staticmethod
def function_formatter(functions: list["FunctionCall"]) -> str:
function_json = [
{"func_name": name, "func_key_values": json.loads(arguments)} for name, arguments in functions
]
function_texts = []
for func in function_json:
prompt = "\n<tool_call>" + func["func_name"]
for key, value in func["func_key_values"].items():
prompt += "\n<arg_key>" + key + "</arg_key>"
if not isinstance(value, str):
value = json.dumps(value, ensure_ascii=False)
prompt += "\n<arg_value>" + value + "</arg_value>"
function_texts.append(prompt)
return "\n".join(function_texts)
class SeedToolUtils(ToolUtils):
r"""Seed tool using template."""
@override
@staticmethod
def tool_formatter(tools: list[dict[str, Any]]) -> str:
return SEED_TOOL_PROMPT.format(tool_text="\n" + json.dumps(tools, ensure_ascii=False))
@override
@staticmethod
def function_formatter(functions: list["FunctionCall"]) -> str:
function_json = [
{"func_name": name, "func_key_values": json.loads(arguments)} for name, arguments in functions
]
function_texts = []
for func in function_json:
prompt = "\n<seed:tool_call>\n<function=" + func["func_name"]
for key, value in func["func_key_values"].items():
prompt += "\n<parameter=" + key + ">"
if not isinstance(value, str):
value = json.dumps(value, ensure_ascii=False)
prompt += value + "</parameter>"
prompt += "\n</function>\n</seed:tool_call>"
function_texts.append(prompt)
return "\n".join(function_texts)
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, list["FunctionCall"]]:
results = []
regex = re.compile(
r"<seed:tool_call>\s*<function=\s*([^\s<]+)\s*(.*?)\s*</function>\s*</seed:tool_call>", re.DOTALL
)
for func_name, params_block in re.findall(regex, content):
args_dict = {}
param_pattern = re.compile(r"<parameter=(.*?)>(.*?)</parameter>", re.DOTALL)
for key, raw_value in re.findall(param_pattern, params_block.strip()):
value = raw_value.strip()
try:
parsed_value = json.loads(value)
except json.JSONDecodeError:
parsed_value = raw_value
args_dict[key] = parsed_value
results.append(FunctionCall(func_name.strip(), json.dumps(args_dict, ensure_ascii=False)))
return results
class LingToolUtils(QwenToolUtils):
r"""Ling v2 tool using template."""
@override
@staticmethod
def tool_formatter(tools: list[dict[str, Any]]) -> str:
tool_text = ""
for tool in tools:
wrapped_tool = tool if tool.get("type") == "function" else {"type": "function", "function": tool}
tool_text += "\n" + json.dumps(wrapped_tool, ensure_ascii=False)
return LING_TOOL_PROMPT.format(tool_text=tool_text) + "\n" + "detailed thinking off"
TOOLS = {
"default": DefaultToolUtils(),
"glm4": GLM4ToolUtils(),
"llama3": Llama3ToolUtils(),
"mistral": MistralToolUtils(),
"qwen": QwenToolUtils(),
"glm4_moe": GLM4MOEToolUtils(),
"seed_oss": SeedToolUtils(),
"ling": LingToolUtils(),
}

View File

@@ -56,13 +56,13 @@ LAYERNORM_NAMES = {"norm", "ln"}
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
METHODS = ["full", "freeze", "lora"]
METHODS = ["full", "freeze", "lora", "oft"]
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
MULTIMODAL_SUPPORTED_MODELS = set()
PEFT_METHODS = {"lora"}
PEFT_METHODS = {"lora", "oft"}
RUNNING_LOG = "running_log.txt"
@@ -126,6 +126,7 @@ class QuantizationMethod(str, Enum):
QUANTO = "quanto"
EETQ = "eetq"
HQQ = "hqq"
MXFP4 = "mxfp4"
class RopeScaling(str, Enum):
@@ -143,7 +144,7 @@ def register_model_group(
for name, path in models.items():
SUPPORTED_MODELS[name] = path
if template is not None and (
any(suffix in name for suffix in ("-Chat", "-Distill", "-Instruct")) or multimodal
any(suffix in name for suffix in ("-Chat", "-Distill", "-Instruct", "-Thinking")) or multimodal
):
DEFAULT_TEMPLATE[name] = template
@@ -276,7 +277,7 @@ register_model_group(
register_model_group(
models={
"ChatGLM2-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm2-6b",
DownloadSource.DEFAULT: "zai-org/chatglm2-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
}
},
@@ -287,11 +288,11 @@ register_model_group(
register_model_group(
models={
"ChatGLM3-6B-Base": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base",
DownloadSource.DEFAULT: "zai-org/chatglm3-6b-base",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base",
},
"ChatGLM3-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b",
DownloadSource.DEFAULT: "zai-org/chatglm3-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
},
},
@@ -333,7 +334,7 @@ register_model_group(
register_model_group(
models={
"CodeGeeX4-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/codegeex4-all-9b",
DownloadSource.DEFAULT: "zai-org/codegeex4-all-9b",
DownloadSource.MODELSCOPE: "ZhipuAI/codegeex4-all-9b",
},
},
@@ -589,6 +590,59 @@ register_model_group(
)
register_model_group(
models={
"Devstral-Small-2507-Instruct": {
DownloadSource.DEFAULT: "mistralai/Devstral-Small-2507",
DownloadSource.MODELSCOPE: "mistralai/Devstral-Small-2507",
},
},
template="mistral_small",
)
register_model_group(
models={
"dots.ocr": {
DownloadSource.DEFAULT: "rednote-hilab/dots.ocr",
DownloadSource.MODELSCOPE: "rednote-hilab/dots.ocr",
},
},
template="dots_ocr",
multimodal=True,
)
register_model_group(
models={
"ERNIE-4.5-21B-A3B-Thinking": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-21B-A3B-Thinking",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-21B-A3B-Thinking",
},
},
template="ernie",
)
register_model_group(
models={
"ERNIE-4.5-0.3B-PT": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-0.3B-PT",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-0.3B-PT",
},
"ERNIE-4.5-21B-A3B-PT": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-21B-A3B-PT",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-21B-A3B-PT",
},
"ERNIE-4.5-300B-A47B-PT": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-300B-A47B-PT",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-300B-A47B-PT",
},
},
template="ernie_nothink",
)
register_model_group(
models={
"EXAONE-3.0-7.8B-Instruct": {
@@ -634,6 +688,61 @@ register_model_group(
)
register_model_group(
models={
"Falcon-H1-0.5B-Base": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-0.5B-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-0.5B-Base",
},
"Falcon-H1-1.5B-Base": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-1.5B-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-1.5B-Base",
},
"Falcon-H1-1.5B-Deep-Base": {
DownloadSource.DEFAULT: "tiuae/Falcon-H1-1.5B-Deep-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-1.5B-Deep-Base",
},
"Falcon-H1-3B-Base": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-3B-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-3B-Base",
},
"Falcon-H1-7B-Base": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-7B-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-7B-Base",
},
"Falcon-H1-34B-Base": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-34B-Base",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-34B-Base",
},
"Falcon-H1-0.5B-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-0.5B-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-0.5B-Instruct",
},
"Falcon-H1-1.5B-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-1.5B-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-1.5B-Instruct",
},
"Falcon-H1-1.5B-Deep-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-1.5B-Deep-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-1.5B-Deep-Instruct",
},
"Falcon-H1-3B-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-3B-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-3B-Instruct",
},
"Falcon-H1-7B-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-7B-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-7B-Instruct",
},
"Falcon-H1-34B-Instruct": {
DownloadSource.DEFAULT: "tiiuae/Falcon-H1-34B-Instruct",
DownloadSource.MODELSCOPE: "tiiuae/Falcon-H1-34B-Instruct",
},
},
template="falcon_h1",
)
register_model_group(
models={
"Gemma-2B": {
@@ -658,6 +767,13 @@ register_model_group(
"Gemma-1.1-7B-Instruct": {
DownloadSource.DEFAULT: "google/gemma-1.1-7b-it",
},
},
template="gemma",
)
register_model_group(
models={
"Gemma-2-2B": {
DownloadSource.DEFAULT: "google/gemma-2-2b",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-2-2b",
@@ -684,10 +800,18 @@ register_model_group(
DownloadSource.DEFAULT: "google/gemma-2-27b-it",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-2-27b-it",
},
"Gemma-3-270M": {
DownloadSource.DEFAULT: "google/gemma-3-270m",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3-270m",
},
"Gemma-3-1B": {
DownloadSource.DEFAULT: "google/gemma-3-1b-pt",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3-1b-pt",
},
"Gemma-3-270M-Instruct": {
DownloadSource.DEFAULT: "google/gemma-3-270m-it",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3-270m-it",
},
"Gemma-3-1B-Instruct": {
DownloadSource.DEFAULT: "google/gemma-3-1b-it",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3-1b-it",
@@ -697,7 +821,7 @@ register_model_group(
DownloadSource.MODELSCOPE: "google/medgemma-27b-text-it",
},
},
template="gemma",
template="gemma2",
)
@@ -735,37 +859,65 @@ register_model_group(
DownloadSource.DEFAULT: "google/medgemma-4b-it",
DownloadSource.MODELSCOPE: "google/medgemma-4b-it",
},
"MedGemma-27B-Instruct": {
DownloadSource.DEFAULT: "google/medgemma-27b-text-it",
DownloadSource.MODELSCOPE: "google/medgemma-27b-text-it",
},
},
template="gemma3",
multimodal=True,
)
register_model_group(
models={
"Gemma-3n-E2B": {
DownloadSource.DEFAULT: "google/gemma-3n-E2B",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3n-E2B",
},
"Gemma-3n-E4B": {
DownloadSource.DEFAULT: "google/gemma-3n-E4B",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3n-E4B",
},
"Gemma-3n-E2B-Instruct": {
DownloadSource.DEFAULT: "google/gemma-3n-E2B-it",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3n-E2B-it",
},
"Gemma-3n-E4B-Instruct": {
DownloadSource.DEFAULT: "google/gemma-3n-E4B-it",
DownloadSource.MODELSCOPE: "LLM-Research/gemma-3n-E4B-it",
},
},
template="gemma3n",
multimodal=True,
)
register_model_group(
models={
"GLM-4-9B": {
DownloadSource.DEFAULT: "THUDM/glm-4-9b",
DownloadSource.DEFAULT: "zai-org/glm-4-9b",
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b",
},
"GLM-4-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat",
DownloadSource.DEFAULT: "zai-org/glm-4-9b-chat",
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat",
DownloadSource.OPENMIND: "LlamaFactory/glm-4-9b-chat",
},
"GLM-4-9B-1M-Chat": {
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat-1m",
DownloadSource.DEFAULT: "zai-org/glm-4-9b-chat-1m",
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat-1m",
},
"GLM-4-0414-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-4-9B-0414",
DownloadSource.DEFAULT: "zai-org/GLM-4-9B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-9B-0414",
},
"GLM-4-0414-32B-Base": {
DownloadSource.DEFAULT: "THUDM/GLM-4-32B-Base-0414",
DownloadSource.DEFAULT: "zai-org/GLM-4-32B-Base-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-32B-Base-0414",
},
"GLM-4-0414-32B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-4-32B-0414",
DownloadSource.DEFAULT: "zai-org/GLM-4-32B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-32B-0414",
},
},
@@ -773,14 +925,65 @@ register_model_group(
)
register_model_group(
models={
"GLM-4.1V-9B-Base": {
DownloadSource.DEFAULT: "zai-org/GLM-4.1V-9B-Base",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.1V-9B-Base",
},
"GLM-4.1V-9B-Thinking": {
DownloadSource.DEFAULT: "zai-org/GLM-4.1V-9B-Thinking",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.1V-9B-Thinking",
},
},
template="glm4v",
multimodal=True,
)
register_model_group(
models={
"GLM-4.5-Air-Base": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5-Air-Base",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5-Air-Base",
},
"GLM-4.5-Base": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5-Base",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5-Base",
},
"GLM-4.5-Air-Thinking": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5-Air",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5-Air",
},
"GLM-4.5-Thinking": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5",
},
},
template="glm4_moe",
)
register_model_group(
models={
"GLM-4.5V-Air-Thinking": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5V",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5V",
}
},
template="glm4v_moe",
multimodal=True,
)
register_model_group(
models={
"GLM-Z1-0414-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-Z1-9B-0414",
DownloadSource.DEFAULT: "zai-org/GLM-Z1-9B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-Z1-9B-0414",
},
"GLM-Z1-0414-32B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-Z1-32B-0414",
DownloadSource.DEFAULT: "zai-org/GLM-Z1-32B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-Z1-32B-0414",
},
},
@@ -810,6 +1013,21 @@ register_model_group(
)
register_model_group(
models={
"GPT-OSS-20B-Thinking": {
DownloadSource.DEFAULT: "openai/gpt-oss-20b",
DownloadSource.MODELSCOPE: "openai/gpt-oss-20b",
},
"GPT-OSS-120B-Thinking": {
DownloadSource.DEFAULT: "openai/gpt-oss-120b",
DownloadSource.MODELSCOPE: "openai/gpt-oss-120b",
},
},
template="gpt",
)
register_model_group(
models={
"Granite-3.0-1B-A400M-Base": {
@@ -917,6 +1135,17 @@ register_model_group(
)
register_model_group(
models={
"Granite-4.0-tiny-preview": {
DownloadSource.DEFAULT: "ibm-granite/granite-4.0-tiny-preview",
DownloadSource.MODELSCOPE: "ibm-granite/granite-4.0-tiny-preview",
},
},
template="granite4",
)
register_model_group(
models={
"Hunyuan-7B-Instruct": {
@@ -1073,12 +1302,52 @@ register_model_group(
DownloadSource.DEFAULT: "OpenGVLab/InternVL3-78B-hf",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3-78B-hf",
},
"InternVL3.5-1B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-1B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-1B-HF",
},
"InternVL3.5-2B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-2B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-2B-HF",
},
"InternVL3.5-4B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-4B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-4B-HF",
},
"InternVL3.5-8B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-8B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-8B-HF",
},
"InternVL3.5-14B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-14B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-14B-HF",
},
"InternVL3.5-30B-A3B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-30B-A3B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-30B-A3B-HF",
},
"InternVL3.5-38B-hf": {
DownloadSource.DEFAULT: "OpenGVLab/InternVL3_5-38B-HF",
DownloadSource.MODELSCOPE: "OpenGVLab/InternVL3_5-38B-HF",
},
},
template="intern_vl",
multimodal=True,
)
register_model_group(
models={
"Intern-S1-mini": {
DownloadSource.DEFAULT: "internlm/Intern-S1-mini",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/Intern-S1-mini",
}
},
template="intern_s1",
multimodal=True,
)
register_model_group(
models={
"Jamba-v0.1": {
@@ -1089,6 +1358,29 @@ register_model_group(
)
register_model_group(
models={
"Keye-VL-8B-Chat": {
DownloadSource.DEFAULT: "Kwai-Keye/Keye-VL-8B-Preview",
DownloadSource.MODELSCOPE: "Kwai-Keye/Keye-VL-8B-Preview",
},
},
template="keye_vl",
multimodal=True,
)
register_model_group(
models={
"Kimi-Dev-72B-Instruct": {
DownloadSource.DEFAULT: "moonshotai/Kimi-Dev-72B",
DownloadSource.MODELSCOPE: "moonshotai/Kimi-Dev-72B",
},
},
template="qwen",
)
register_model_group(
models={
"Kimi-VL-A3B-Instruct": {
@@ -1099,6 +1391,10 @@ register_model_group(
DownloadSource.DEFAULT: "moonshotai/Kimi-VL-A3B-Thinking",
DownloadSource.MODELSCOPE: "moonshotai/Kimi-VL-A3B-Thinking",
},
"Kimi-VL-A3B-Thinking-2506": {
DownloadSource.DEFAULT: "moonshotai/Kimi-VL-A3B-Thinking-2506",
DownloadSource.MODELSCOPE: "moonshotai/Kimi-VL-A3B-Thinking-2506",
},
},
template="kimi_vl",
multimodal=True,
@@ -1462,20 +1758,36 @@ register_model_group(
register_model_group(
models={
"MiMo-7B-VL-Instruct": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-VL-7B-SFT",
},
"MiMo-7B-VL-RL": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-RL",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-VL-7B-RL",
},
"MiMo-VL-7B-RL-2508": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-RL-2508",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-VL-7B-RL-2508",
},
},
template="mimo_vl",
multimodal=True,
)
register_model_group(
models={
"MiMo-7B-VL-Instruct": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-VL-7B-SFT",
},
"MiMo-VL-7B-SFT-2508": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT-2508",
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT-2508",
},
},
template="qwen2_vl",
multimodal=True,
)
register_model_group(
models={
"MiniCPM-2B-SFT-Chat": {
@@ -1513,6 +1825,10 @@ register_model_group(
DownloadSource.DEFAULT: "openbmb/MiniCPM4-8B",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM4-8B",
},
"MiniCPM4.1-8B-Chat": {
DownloadSource.DEFAULT: "openbmb/MiniCPM4.1-8B",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM4.1-8B",
},
},
template="cpm4",
)
@@ -1520,7 +1836,7 @@ register_model_group(
register_model_group(
models={
"MiniCPM-o-2_6": {
"MiniCPM-o-2.6": {
DownloadSource.DEFAULT: "openbmb/MiniCPM-o-2_6",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM-o-2_6",
},
@@ -1532,7 +1848,7 @@ register_model_group(
register_model_group(
models={
"MiniCPM-V-2_6": {
"MiniCPM-V-2.6": {
DownloadSource.DEFAULT: "openbmb/MiniCPM-V-2_6",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM-V-2_6",
},
@@ -1542,6 +1858,30 @@ register_model_group(
)
register_model_group(
models={
"MiniCPM-V-4": {
DownloadSource.DEFAULT: "openbmb/MiniCPM-V-4",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM-V-4",
},
},
template="minicpm_v",
multimodal=True,
)
register_model_group(
models={
"MiniCPM-V-4.5": {
DownloadSource.DEFAULT: "openbmb/MiniCPM-V-4_5",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM-V-4_5",
},
},
template="minicpm_v",
multimodal=True,
)
register_model_group(
models={
"Ministral-8B-Instruct-2410": {
@@ -1617,6 +1957,10 @@ register_model_group(
DownloadSource.DEFAULT: "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
DownloadSource.MODELSCOPE: "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
},
"Mistral-Small-3.2-24B-Instruct": {
DownloadSource.DEFAULT: "mistralai/Mistral-Small-3.2-24B-Instruct-2506",
DownloadSource.MODELSCOPE: "mistralai/Mistral-Small-3.2-24B-Instruct-2506",
},
},
template="mistral_small",
multimodal=True,
@@ -1646,6 +1990,37 @@ register_model_group(
)
register_model_group(
models={
"MobileLLM-R1-140M-Base": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-140M-base",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-140M-base",
},
"MobileLLM-R1-360M-Base": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-360M-base",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-360M-base",
},
"MobileLLM-R1-950M-Base": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-950M-base",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-950M-base",
},
"MobileLLM-R1-140M-Instruct": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-140M",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-140M",
},
"MobileLLM-R1-360M-Instruct": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-360M",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-360M",
},
"MobileLLM-R1-950M-Instruct": {
DownloadSource.DEFAULT: "facebook/MobileLLM-R1-950M",
DownloadSource.MODELSCOPE: "facebook/MobileLLM-R1-950M",
},
},
template="llama3",
)
register_model_group(
models={
"Moonlight-16B-A3B": {
@@ -2538,75 +2913,114 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Base",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Base",
},
"Qwen3-0.6B-Instruct": {
"Qwen3-0.6B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-0.6B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-0.6B",
},
"Qwen3-1.7B-Instruct": {
"Qwen3-1.7B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-1.7B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-1.7B",
},
"Qwen3-4B-Instruct": {
"Qwen3-4B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B",
},
"Qwen3-8B-Instruct": {
"Qwen3-4B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Thinking-2507",
},
"Qwen3-8B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-8B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-8B",
},
"Qwen3-14B-Instruct": {
"Qwen3-14B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-14B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-14B",
},
"Qwen3-32B-Instruct": {
"Qwen3-32B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-32B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-32B",
},
"Qwen3-30B-A3B-Instruct": {
"Qwen3-30B-A3B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B",
},
"Qwen3-235B-A22B-Instruct": {
"Qwen3-30B-A3B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Thinking-2507",
},
"Qwen3-235B-A22B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B",
},
"Qwen3-0.6B-Instruct-GPTQ-Int8": {
"Qwen3-235B-A22B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Thinking-2507",
},
"Qwen3-0.6B-Thinking-GPTQ-Int8": {
DownloadSource.DEFAULT: "Qwen/Qwen3-0.6B-GPTQ-Int8",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-0.6B-GPTQ-Int8",
},
"Qwen3-1.7B-Instruct-GPTQ-Int8": {
"Qwen3-1.7B-Thinking-GPTQ-Int8": {
DownloadSource.DEFAULT: "Qwen/Qwen3-1.7B-GPTQ-Int8",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-1.7B-GPTQ-Int8",
},
"Qwen3-4B-Instruct-AWQ": {
"Qwen3-4B-Thinking-AWQ": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-AWQ",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-AWQ",
},
"Qwen3-8B-Instruct-AWQ": {
"Qwen3-8B-Thinking-AWQ": {
DownloadSource.DEFAULT: "Qwen/Qwen3-8B-AWQ",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-8B-AWQ",
},
"Qwen3-14B-Instruct-AWQ": {
"Qwen3-14B-Thinking-AWQ": {
DownloadSource.DEFAULT: "Qwen/Qwen3-14B-AWQ",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-14B-AWQ",
},
"Qwen3-32B-Instruct-AWQ": {
"Qwen3-32B-Thinking-AWQ": {
DownloadSource.DEFAULT: "Qwen/Qwen3-32B-AWQ",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-32B-AWQ",
},
"Qwen3-30B-A3B-Instruct-GPTQ-Int4": {
"Qwen3-30B-A3B-Thinking-GPTQ-Int4": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-GPTQ-Int4",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-GPTQ-Int4",
},
"Qwen3-235B-A22B-Instruct-GPTQ-Int4": {
"Qwen3-235B-A22B-Thinking-GPTQ-Int4": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-GPTQ-Int4",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-GPTQ-Int4",
},
"Qwen/Qwen3-Next-80B-A3B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-Next-80B-A3B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Next-80B-A3B-Thinking",
},
},
template="qwen3",
)
register_model_group(
models={
"Qwen3-4B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Instruct-2507",
},
"Qwen3-30B-A3B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Instruct-2507",
},
"Qwen3-235B-A22B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Instruct-2507",
},
"Qwen3-Next-80B-A3B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-Next-80B-A3B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Next-80B-A3B-Instruct",
},
},
template="qwen3_nothink",
)
register_model_group(
models={
"Qwen2-Audio-7B": {
@@ -2647,6 +3061,34 @@ register_model_group(
)
register_model_group(
models={
"Qwen3-Omni-30B-A3B-Captioner": {
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Captioner",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Captioner",
},
"Qwen3-Omni-30B-A3B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Instruct",
},
},
template="qwen3_omni_nothink",
multimodal=True,
)
register_model_group(
models={
"Qwen3-Omni-30B-A3B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Thinking",
},
},
template="qwen3_omni",
multimodal=True,
)
register_model_group(
models={
"Qwen2-VL-2B": {
@@ -2749,22 +3191,76 @@ register_model_group(
)
register_model_group(
models={
"Qwen3-VL-235B-A22B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-235B-A22B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-235B-A22B-Instruct",
},
"Qwen3-VL-30B-A3B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-30B-A3B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-30B-A3B-Instruct",
},
},
template="qwen3_vl_nothink",
multimodal=True,
)
register_model_group(
models={
"Qwen3-VL-235B-A22B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-235B-A22B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-235B-A22B-Thinking",
},
"Qwen3-VL-30B-A3B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-30B-A3B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-30B-A3B-Thinking",
},
},
template="qwen3_vl",
multimodal=True,
)
register_model_group(
models={
"Seed-Coder-8B-Base": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-Coder-8B-Base",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-Coder-8B-Base",
},
"Seed-Coder-8B-Instruct": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-Coder-8B-Instruct",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-Coder-8B-Instruct",
},
"Seed-Coder-8B-Instruct-Reasoning": {
"Seed-Coder-8B-Thinking": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-Coder-8B-Reasoning-bf16",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-Coder-8B-Reasoning-bf16",
},
},
template="seed_coder",
)
register_model_group(
models={
"Seed-OSS-36B-Base": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-OSS-36B-Base",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-OSS-36B-Base",
},
"Seed-OSS-36B-Base-woSyn": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-OSS-36B-Base-woSyn",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-OSS-36B-Base-woSyn",
},
"Seed-OSS-36B-Instruct": {
DownloadSource.DEFAULT: "ByteDance-Seed/Seed-OSS-36B-Instruct",
DownloadSource.MODELSCOPE: "ByteDance-Seed/Seed-OSS-36B-Instruct",
},
},
template="seed_oss",
)
register_model_group(
models={
"Skywork-13B-Base": {

View File

@@ -15,22 +15,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import platform
import accelerate
import datasets
import peft
import torch
import transformers
import trl
from transformers.utils import is_torch_cuda_available, is_torch_npu_available
VERSION = "0.9.3"
VERSION = "0.9.4.dev0"
def print_env() -> None:
import os
import platform
import accelerate
import datasets
import peft
import torch
import transformers
import trl
from transformers.utils import is_torch_cuda_available, is_torch_npu_available
info = {
"`llamafactory` version": VERSION,
"Platform": platform.platform(),

View File

@@ -50,7 +50,7 @@ class LoggerHandler(logging.Handler):
def _write_log(self, log_entry: str) -> None:
with open(self.running_log, "a", encoding="utf-8") as f:
f.write(log_entry + "\n\n")
f.write(log_entry + "\n")
def emit(self, record) -> None:
if record.name == "httpx":

View File

@@ -18,11 +18,12 @@
import gc
import os
import socket
from typing import TYPE_CHECKING, Any, Literal, Union
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
import torch
import torch.distributed as dist
import transformers.dynamic_module_utils
from huggingface_hub.utils import WeakFileLock
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
from transformers.dynamic_module_utils import get_relative_imports
from transformers.utils import (
@@ -35,7 +36,6 @@ from transformers.utils import (
from transformers.utils.versions import require_version
from . import logging
from .packages import is_transformers_version_greater_than
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
@@ -94,15 +94,11 @@ def check_version(requirement: str, mandatory: bool = False) -> None:
def check_dependencies() -> None:
r"""Check the version of the required packages."""
check_version(
"transformers>=4.45.0,<=4.52.4,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0,!=4.52.0"
)
check_version("datasets>=2.16.0,<=3.6.0")
check_version("accelerate>=0.34.0,<=1.7.0")
check_version("peft>=0.14.0,<=0.15.2")
check_version("transformers>=4.49.0,<=4.57.0")
check_version("datasets>=2.16.0,<=4.0.0")
check_version("accelerate>=1.3.0,<=1.11.0")
check_version("peft>=0.14.0,<=0.17.1")
check_version("trl>=0.8.6,<=0.9.6")
if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"):
logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.")
def calculate_tps(dataset: list[dict[str, Any]], metrics: dict[str, float], stage: Literal["sft", "rm"]) -> float:
@@ -182,8 +178,22 @@ def get_logits_processor() -> "LogitsProcessorList":
return logits_processor
def get_current_memory() -> tuple[int, int]:
r"""Get the available and total memory for the current device (in Bytes)."""
if is_torch_xpu_available():
return torch.xpu.mem_get_info()
elif is_torch_npu_available():
return torch.npu.mem_get_info()
elif is_torch_mps_available():
return torch.mps.current_allocated_memory(), torch.mps.recommended_max_memory()
elif is_torch_cuda_available():
return torch.cuda.mem_get_info()
else:
return 0, -1
def get_peak_memory() -> tuple[int, int]:
r"""Get the peak memory usage for the current device (in Bytes)."""
r"""Get the peak memory usage (allocated, reserved) for the current device (in Bytes)."""
if is_torch_xpu_available():
return torch.xpu.max_memory_allocated(), torch.xpu.max_memory_reserved()
elif is_torch_npu_available():
@@ -193,7 +203,7 @@ def get_peak_memory() -> tuple[int, int]:
elif is_torch_cuda_available():
return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved()
else:
return 0, 0
return 0, -1
def has_tokenized_data(path: "os.PathLike") -> bool:
@@ -201,9 +211,9 @@ def has_tokenized_data(path: "os.PathLike") -> bool:
return os.path.isdir(path) and len(os.listdir(path)) > 0
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
def infer_optim_dtype(model_dtype: Optional["torch.dtype"]) -> "torch.dtype":
r"""Infer the optimal dtype according to the model_dtype and device compatibility."""
if _is_bf16_available and model_dtype == torch.bfloat16:
if _is_bf16_available and (model_dtype == torch.bfloat16 or model_dtype is None):
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
@@ -259,26 +269,37 @@ def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
return model_args.model_name_or_path
if use_modelscope():
check_version("modelscope>=1.11.0", mandatory=True)
check_version("modelscope>=1.14.0", mandatory=True)
from modelscope import snapshot_download # type: ignore
from modelscope.hub.api import HubApi # type: ignore
if model_args.ms_hub_token:
api = HubApi()
api.login(model_args.ms_hub_token)
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
return snapshot_download(
with WeakFileLock(os.path.abspath(os.path.expanduser("~/.cache/llamafactory/modelscope.lock"))):
model_path = snapshot_download(
model_args.model_name_or_path,
revision=revision,
cache_dir=model_args.cache_dir,
)
return model_path
if use_openmind():
check_version("openmind>=0.8.0", mandatory=True)
from openmind.utils.hub import snapshot_download # type: ignore
return snapshot_download(
with WeakFileLock(os.path.abspath(os.path.expanduser("~/.cache/llamafactory/openmind.lock"))):
model_path = snapshot_download(
model_args.model_name_or_path,
revision=model_args.model_revision,
cache_dir=model_args.cache_dir,
)
return model_path
def use_modelscope() -> bool:
return is_env_enabled("USE_MODELSCOPE_HUB")
@@ -305,5 +326,5 @@ def fix_proxy(ipv6_enabled: bool = False) -> None:
r"""Fix proxy settings for gradio ui."""
os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0"
if ipv6_enabled:
for name in ("http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY"):
os.environ.pop(name, None)
os.environ.pop("http_proxy", None)
os.environ.pop("HTTP_PROXY", None)

View File

@@ -58,6 +58,10 @@ def is_apollo_available():
return _is_package_available("apollo_torch")
def is_jieba_available():
return _is_package_available("jieba")
def is_gradio_available():
return _is_package_available("gradio")

View File

@@ -122,6 +122,48 @@ class LoraArguments:
)
@dataclass
class OFTArguments:
r"""Arguments pertaining to the OFT training."""
additional_target: Optional[str] = field(
default=None,
metadata={
"help": (
"Name(s) of modules apart from LoRA layers to be set as trainable "
"and saved in the final checkpoint. "
"Use commas to separate multiple modules."
)
},
)
module_dropout: float = field(
default=0.0,
metadata={"help": "Dropout rate for the OFT fine-tuning."},
)
oft_rank: int = field(
default=0,
metadata={"help": "The intrinsic dimension for OFT fine-tuning."},
)
oft_block_size: int = field(
default=32,
metadata={"help": "The intrinsic dimension for OFT fine-tuning."},
)
oft_target: str = field(
default="all",
metadata={
"help": (
"Name(s) of target modules to apply OFT. "
"Use commas to separate multiple modules. "
"Use `all` to specify all the linear modules."
)
},
)
create_new_adapter: bool = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
)
@dataclass
class RLHFArguments:
r"""Arguments pertaining to the PPO, DPO and KTO training."""
@@ -134,6 +176,10 @@ class RLHFArguments:
default=0.0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
)
pref_bco_weight: float = field(
default=0.0,
metadata={"help": "The Binary Classifier Optimization coefficient in DPO training."},
)
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
default="sigmoid",
metadata={"help": "The type of DPO loss to use."},
@@ -396,7 +442,14 @@ class SwanLabArguments:
@dataclass
class FinetuningArguments(
SwanLabArguments, BAdamArgument, ApolloArguments, GaloreArguments, RLHFArguments, LoraArguments, FreezeArguments
SwanLabArguments,
BAdamArgument,
ApolloArguments,
GaloreArguments,
RLHFArguments,
LoraArguments,
OFTArguments,
FreezeArguments,
):
r"""Arguments pertaining to which techniques we are going to fine-tuning with."""
@@ -424,6 +477,10 @@ class FinetuningArguments(
default=False,
metadata={"help": "Whether or not to use the Muon optimizer."},
)
use_dft_loss: bool = field(
default=False,
metadata={"help": "Whether to use the DFT loss."},
)
freeze_vision_tower: bool = field(
default=True,
metadata={"help": "Whether ot not to freeze the vision tower in MLLM training."},
@@ -467,12 +524,13 @@ class FinetuningArguments(
self.freeze_extra_modules: Optional[list[str]] = split_arg(self.freeze_extra_modules)
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
self.lora_target: list[str] = split_arg(self.lora_target)
self.oft_target: list[str] = split_arg(self.oft_target)
self.additional_target: Optional[list[str]] = split_arg(self.additional_target)
self.galore_target: list[str] = split_arg(self.galore_target)
self.apollo_target: list[str] = split_arg(self.apollo_target)
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.finetuning_type in ["lora", "oft", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
@@ -482,6 +540,9 @@ class FinetuningArguments(
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
if self.stage == "ppo" and self.reward_model_type == "oft" and self.finetuning_type != "oft":
raise ValueError("`reward_model_type` cannot be oft for Freeze/Full PPO training.")
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")

View File

@@ -213,6 +213,23 @@ class QuantizationArguments:
default=None,
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
)
fp8: bool = field(
default=False,
metadata={
"help": "Enable FP8 mixed precision training via HuggingFace Accelerate. "
"Requires PyTorch 2.7+ and Hopper architecture GPUs."
},
)
fp8_backend: str = field(
default="auto",
metadata={
"help": "FP8 backend to use ('auto', 'torchao', 'te', 'msamp'). 'auto' selects best available backend."
},
)
fp8_enable_fsdp_float8_all_gather: bool = field(
default=False,
metadata={"help": "Enable FP8 optimizations for FSDP2 all-gather operations."},
)
@dataclass

View File

@@ -15,7 +15,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
from pathlib import Path
@@ -23,7 +22,6 @@ from typing import Any, Optional, Union
import torch
import transformers
import yaml
from omegaconf import OmegaConf
from transformers import HfArgumentParser
from transformers.integrations import is_deepspeed_zero3_enabled
@@ -34,6 +32,7 @@ from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_availab
from ..extras import logging
from ..extras.constants import CHECKPOINT_NAMES, EngineName
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
from ..extras.packages import is_transformers_version_greater_than
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
@@ -62,11 +61,11 @@ def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[
if sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml"):
override_config = OmegaConf.from_cli(sys.argv[2:])
dict_config = yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
dict_config = OmegaConf.load(Path(sys.argv[1]).absolute())
return OmegaConf.to_container(OmegaConf.merge(dict_config, override_config))
elif sys.argv[1].endswith(".json"):
override_config = OmegaConf.from_cli(sys.argv[2:])
dict_config = json.loads(Path(sys.argv[1]).absolute().read_text())
dict_config = OmegaConf.load(Path(sys.argv[1]).absolute())
return OmegaConf.to_container(OmegaConf.merge(dict_config, override_config))
else:
return sys.argv[1:]
@@ -113,8 +112,8 @@ def _verify_model_args(
raise ValueError("Adapter is only valid for the LoRA method.")
if model_args.quantization_bit is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if finetuning_args.finetuning_type not in ["lora", "oft"]:
raise ValueError("Quantization is only compatible with the LoRA or OFT method.")
if finetuning_args.pissa_init:
raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")
@@ -132,6 +131,14 @@ def _verify_model_args(
logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
model_args.use_fast_tokenizer = False
# Validate advanced training features
if model_args.fp8 and model_args.quantization_bit is not None:
raise ValueError("FP8 training is not compatible with quantization. Please disable one of them.")
if model_args.fp8_enable_fsdp_float8_all_gather and not model_args.fp8:
logger.warning_rank0("fp8_enable_fsdp_float8_all_gather requires fp8=True. Setting fp8=True.")
model_args.fp8 = True
def _check_extra_dependencies(
model_args: "ModelArguments",
@@ -148,7 +155,7 @@ def _check_extra_dependencies(
check_version("mixture-of-depth>=1.1.6", mandatory=True)
if model_args.infer_backend == EngineName.VLLM:
check_version("vllm>=0.4.3,<=0.8.6")
check_version("vllm>=0.4.3,<=0.10.2")
check_version("vllm", mandatory=True)
elif model_args.infer_backend == EngineName.SGLANG:
check_version("sglang>=0.4.5")
@@ -166,13 +173,17 @@ def _check_extra_dependencies(
if finetuning_args.use_adam_mini:
check_version("adam-mini", mandatory=True)
if finetuning_args.use_swanlab:
check_version("swanlab", mandatory=True)
if finetuning_args.plot_loss:
check_version("matplotlib", mandatory=True)
if training_args is not None:
if training_args.deepspeed:
# pin deepspeed version < 0.17 because of https://github.com/deepspeedai/DeepSpeed/issues/7347
check_version("deepspeed>=0.10.0,<=0.16.9", mandatory=True)
check_version("deepspeed", mandatory=True)
check_version("deepspeed>=0.10.0,<=0.16.9")
if training_args.predict_with_generate:
check_version("jieba", mandatory=True)
@@ -303,6 +314,9 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
if data_args.neat_packing and is_transformers_version_greater_than("4.53.0"):
raise ValueError("Neat packing is incompatible with transformers>=4.53.0.")
_set_env_vars()
_verify_model_args(model_args, data_args, finetuning_args)
_check_extra_dependencies(model_args, finetuning_args, training_args)
@@ -348,6 +362,9 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
# https://github.com/huggingface/transformers/blob/v4.50.0/src/transformers/trainer.py#L782
training_args.label_names = training_args.label_names or ["labels"]
if "swanlab" in training_args.report_to and finetuning_args.use_swanlab:
training_args.report_to.remove("swanlab")
if (
training_args.parallel_mode == ParallelMode.DISTRIBUTED
and training_args.ddp_find_unused_parameters is None

View File

@@ -50,7 +50,7 @@ class RayArguments:
default="PACK",
metadata={"help": "The placement strategy for Ray training. Default is PACK."},
)
ray_init_kwargs: Optional[dict] = field(
ray_init_kwargs: Optional[Union[dict, str]] = field(
default=None,
metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."},
)
@@ -59,10 +59,14 @@ class RayArguments:
self.use_ray = use_ray()
if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"):
self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker))
if isinstance(self.ray_init_kwargs, str) and self.ray_init_kwargs.startswith("{"):
self.ray_init_kwargs = _convert_str_dict(json.loads(self.ray_init_kwargs))
if self.ray_storage_filesystem is not None:
if self.ray_storage_filesystem not in ["s3", "gs", "gcs"]:
raise ValueError(
f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}"
f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}."
)
import pyarrow.fs as fs

View File

@@ -12,12 +12,46 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from llamafactory.train.tuner import run_exp # use absolute import
def run_api():
from llamafactory.api.app import run_api as _run_api
_run_api()
def launch():
run_exp()
def run_chat():
from llamafactory.chat.chat_model import run_chat as _run_chat
return _run_chat()
def run_eval():
raise NotImplementedError("Evaluation will be deprecated in the future.")
def export_model():
from llamafactory.train.tuner import export_model as _export_model
return _export_model()
def run_exp():
from llamafactory.train.tuner import run_exp as _run_exp
return _run_exp() # use absolute import
def run_web_demo():
from llamafactory.webui.interface import run_web_demo as _run_web_demo
return _run_web_demo()
def run_web_ui():
from llamafactory.webui.interface import run_web_ui as _run_web_ui
return _run_web_ui()
if __name__ == "__main__":
launch()
run_exp()

View File

@@ -16,7 +16,7 @@ import re
from typing import TYPE_CHECKING
import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from peft import LoraConfig, LoraModel, OFTConfig, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras import logging
@@ -147,6 +147,9 @@ def _setup_lora_tuning(
cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
if is_trainable:
if finetuning_args.finetuning_type == "oft":
logger.info_rank0("Fine-tuning method: OFT")
else:
logger.info_rank0("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
@@ -188,7 +191,7 @@ def _setup_lora_tuning(
if adapter_to_resume is not None: # resume lora training
if model_args.use_unsloth:
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
model = load_unsloth_peft_model(config, model_args, finetuning_args, is_trainable=is_trainable)
else:
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)
@@ -223,6 +226,7 @@ def _setup_lora_tuning(
finetuning_args.additional_target = module_names
logger.warning_rank0("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
if finetuning_args.finetuning_type == "lora":
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
@@ -232,8 +236,19 @@ def _setup_lora_tuning(
"use_dora": finetuning_args.use_dora,
"modules_to_save": finetuning_args.additional_target,
}
elif finetuning_args.finetuning_type == "oft":
peft_kwargs = {
"r": finetuning_args.oft_rank,
"oft_block_size": finetuning_args.oft_block_size,
"target_modules": target_modules,
"module_dropout": finetuning_args.module_dropout,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
if finetuning_args.finetuning_type == "oft":
raise ValueError("Unsloth is currently not supported for OFT.")
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
else:
if finetuning_args.pissa_init:
@@ -244,12 +259,19 @@ def _setup_lora_tuning(
logger.info_rank0(f"Using PiSSA initialization with FSVD steps {finetuning_args.pissa_iter}.")
peft_kwargs["init_lora_weights"] = f"pissa_niter_{finetuning_args.pissa_iter}"
lora_config = LoraConfig(
if finetuning_args.finetuning_type == "lora":
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
elif finetuning_args.finetuning_type == "oft":
peft_config = OFTConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
**peft_kwargs,
)
model = get_peft_model(model, peft_config)
if is_trainable and cast_trainable_params_to_fp32:
for param in filter(lambda p: p.requires_grad, model.parameters()):
@@ -272,8 +294,8 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if is_trainable and getattr(model, "quantization_method", None) is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantized models can only be used for the LoRA tuning.")
if finetuning_args.finetuning_type not in ["lora", "oft"]:
raise ValueError("Quantized models can only be used for the LoRA or OFT tuning.")
if finetuning_args.pissa_init:
raise ValueError("Cannot initialize PiSSA adapter on quantized models.")
@@ -296,7 +318,7 @@ def init_adapter(
_setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "lora":
elif finetuning_args.finetuning_type in ["lora", "oft"]:
model = _setup_lora_tuning(
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
)

View File

@@ -19,6 +19,7 @@ import torch
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForImageTextToText,
AutoModelForSeq2SeqLM,
AutoModelForTextToWaveform,
AutoModelForVision2Seq,
@@ -29,7 +30,6 @@ from trl import AutoModelForCausalLMWithValueHead
from ..extras import logging
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
from ..extras.packages import is_transformers_version_greater_than
from .adapter import init_adapter
from .model_utils.liger_kernel import apply_liger_kernel
from .model_utils.misc import register_autoclass
@@ -39,10 +39,6 @@ from .model_utils.valuehead import load_valuehead_params
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
if is_transformers_version_greater_than("4.46.0"):
from transformers import AutoModelForImageTextToText
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
@@ -111,9 +107,8 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
**init_kwargs,
)
except Exception as e:
raise OSError("Failed to load processor.") from e
patch_processor(processor, tokenizer, model_args)
logger.info_rank0(f"Failed to load processor: {e}.")
processor = None
# Avoid load tokenizer, see:
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
@@ -121,6 +116,9 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
logger.debug("The loaded processor is not an instance of Processor. Dropping it.")
processor = None
if processor is not None:
patch_processor(processor, tokenizer, model_args)
return {"tokenizer": tokenizer, "processor": processor}
@@ -158,16 +156,13 @@ def load_model(
if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs)
else:
if type(config) in AutoModelForVision2Seq._model_mapping.keys(): # image-text
load_class = AutoModelForVision2Seq
elif (
is_transformers_version_greater_than("4.46.0")
and type(config) in AutoModelForImageTextToText._model_mapping.keys()
): # image-text
if type(config) in AutoModelForImageTextToText._model_mapping.keys(): # image-text
load_class = AutoModelForImageTextToText
elif type(config) in AutoModelForVision2Seq._model_mapping.keys(): # image-text
load_class = AutoModelForVision2Seq
elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys(): # audio-text
load_class = AutoModelForSeq2SeqLM
elif type(config) in AutoModelForTextToWaveform._model_mapping.keys(): # audio hack for qwen2_5_omni
elif type(config) in AutoModelForTextToWaveform._model_mapping.keys(): # audio hack for qwen omni
load_class = AutoModelForTextToWaveform
else:
load_class = AutoModelForCausalLM
@@ -176,8 +171,8 @@ def load_model(
model = load_class.from_config(config, trust_remote_code=model_args.trust_remote_code)
else:
model = load_class.from_pretrained(**init_kwargs)
if getattr(model.config, "model_type", None) == "qwen2_5_omni":
model = model.thinker # use part of Omni model
if getattr(model.config, "model_type", None) in ["qwen2_5_omni", "qwen3_omni_moe"]:
model = getattr(model, "thinker")
if model_args.mixture_of_depths == "convert":
model = convert_pretrained_model_to_mod(model, config, model_args)

View File

@@ -67,4 +67,5 @@ def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedToken
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
model.config.vocab_size = new_embedding_size
logger.info_rank0(f"Resized token embeddings from {current_embedding_size} to {new_embedding_size}.")

View File

@@ -47,6 +47,8 @@ def apply_liger_kernel(
from liger_kernel.transformers import apply_liger_kernel_to_gemma3_text as apply_liger_kernel
elif model_type == "glm4":
from liger_kernel.transformers import apply_liger_kernel_to_glm4 as apply_liger_kernel
elif model_type == "glm4v":
from liger_kernel.transformers import apply_liger_kernel_to_glm4v as apply_liger_kernel
elif model_type == "granite":
from liger_kernel.transformers import apply_liger_kernel_to_granite as apply_liger_kernel
elif model_type == "llama":

View File

@@ -39,6 +39,9 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
return
model_type = getattr(model.config, "model_type", None)
text_config = getattr(model.config, "text_config", None)
text_model_type = getattr(text_config, "model_type", None)
if model_type == "dbrx":
from transformers.models.dbrx.modeling_dbrx import DbrxFFN
@@ -57,6 +60,16 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
_set_z3_leaf_modules(model, [GraniteMoeMoE])
if model_type == "glm4_moe":
from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeMoE
_set_z3_leaf_modules(model, [Glm4MoeMoE])
if model_type == "glm4v_moe":
from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextMoE
_set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
@@ -92,17 +105,29 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
if model_type == "qwen3_moe":
if model_type == "qwen3_moe" or text_model_type == "qwen3_moe": # internvl 3.5
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
if model_type == "qwen3_vl_moe":
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import Qwen3VLMoeTextSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3VLMoeTextSparseMoeBlock])
if model_type == "qwen3_omni_moe":
from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.moe_aux_loss_coef:
return
model_type = getattr(config, "model_type", None)
text_config = getattr(config, "text_config", None) # for multimodal model
if model_type in [
"dbrx",
"granitemoe",
@@ -117,9 +142,18 @@ def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_t
]:
setattr(config, "output_router_logits", True)
if text_config and getattr(text_config, "model_type", None) in [
"glm4v_moe_text", # glmv4_5
"qwen3_moe", # internvl_3_5
]:
setattr(text_config, "output_router_logits", True)
if model_type in ["granitemoe", "jamba", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe"]:
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif text_config and getattr(text_config, "model_type", None) in ["qwen3_moe"]:
setattr(text_config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif model_type == "deepseek":
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)

View File

@@ -90,12 +90,13 @@ def configure_quantization(
if model_args.quantization_bit is not None:
logger.warning_rank0("`quantization_bit` will not affect on the PTQ-quantized models.")
if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")
quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
quant_method = quantization_config.get("quant_method", "")
if quant_method != QuantizationMethod.MXFP4 and (is_deepspeed_zero3_enabled() or is_fsdp_enabled()):
# mxfp4 will dequant the model weights
raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")
if quant_method == QuantizationMethod.GPTQ:
check_version("gptqmodel>=2.0.0", mandatory=True)
quantization_config.pop("disable_exllama", None) # remove deprecated args

View File

@@ -0,0 +1,131 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
from typing import Optional
import torch
import torch.nn.functional as F
from transformers.utils import is_torch_npu_available
logger = logging.getLogger(__name__)
_ORIG_SDPA = F.scaled_dot_product_attention
def _to_bool_4d_mask(
attn_mask: Optional[torch.Tensor], q_len: int, kv_len: int, device: torch.device
) -> Optional[torch.Tensor]:
"""Normalize additive/other Hugging Face masks into a boolean mask of shape [B, 1, Q, K] (True = masked)."""
if attn_mask is None:
return None
if attn_mask.dtype != torch.bool:
attn_mask = attn_mask < 0 # additive -inf -> True
if attn_mask.dim() == 4:
return attn_mask[..., :q_len, :kv_len].contiguous()
if attn_mask.dim() == 3:
return attn_mask[:, None, :q_len, :kv_len].contiguous()
if attn_mask.dim() == 2:
return attn_mask[:, None, None, :kv_len].expand(-1, 1, q_len, -1).contiguous()
return attn_mask.to(device)
def _merge_causal_mask(
attn_mask: Optional[torch.Tensor], is_causal: bool, L: int, S: int, device: torch.device
) -> Optional[torch.Tensor]:
"""Merge `is_causal` into the boolean/additive attention mask (True = masked)."""
if not is_causal or L != S:
return attn_mask
causal_bool = torch.ones((1, 1, L, L), dtype=torch.bool, device=device).triu(1)
if attn_mask is None:
return causal_bool
if attn_mask.dtype != torch.bool:
attn_mask = attn_mask < 0
if attn_mask.dim() == 2:
attn_mask = attn_mask[:, None, None, :L].expand(-1, 1, L, -1).contiguous()
elif attn_mask.dim() == 3:
attn_mask = attn_mask[:, None, :L, :L].contiguous()
return attn_mask | causal_bool
def _sdpa_npu_redirect(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
):
"""A drop-in replacement for `F.scaled_dot_product_attention`.
Automatically falls back to the native SDPA when conditions are not met.
The NPU-fused path is only enabled when q/k/v have shape (B, N, S, D); otherwise, it falls back.
"""
# Fall back if the feature is disabled or the conditions are not satisfied.
if os.environ.get("NPU_FA_DISABLE", "0") == "1":
return _ORIG_SDPA(q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
npu_ok = is_torch_npu_available() and (q.device.type == "npu")
dtype_ok = q.dtype in (torch.float16, torch.bfloat16)
shape_ok = q.dim() == 4 and k.dim() == 4 and v.dim() == 4 # 期望 BNSD
if not (npu_ok and dtype_ok and shape_ok):
return _ORIG_SDPA(q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
L, S = q.size(-2), k.size(-2)
merged_mask = _merge_causal_mask(attn_mask, is_causal, L, S, q.device)
mask_bool = _to_bool_4d_mask(merged_mask, q_len=L, kv_len=S, device=q.device)
head_dim = q.size(-1)
sc = (1.0 / math.sqrt(head_dim)) if (scale is None) else scale
train_mode = torch.is_grad_enabled() and (dropout_p > 0)
keep_prob = 1.0 - (dropout_p if train_mode else 0.0)
try:
import torch_npu
out = torch_npu.npu_fusion_attention(
q.contiguous(),
k.contiguous(),
v.contiguous(),
head_num=q.size(-3), # N
input_layout="BNSD", # (B, N, S, D)
pse=None,
atten_mask=mask_bool, # True = masked
scale=sc,
pre_tockens=2147483647,
next_tockens=2147483647,
keep_prob=keep_prob,
sync=False,
inner_precise=0,
)[0]
return out
except Exception as e:
if os.environ.get("NPU_FA_VERBOSE", "0") == "1":
logger.warning(f"[sdpa_npu_redirect] npu_fusion_attention failed: {e}; fallback to SDPA.")
return _ORIG_SDPA(q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
def apply_sdpa_npu_redirect(verbose: bool = True):
"""Install the redirection by pointing `F.scaled_dot_product_attention` to our implementation."""
if getattr(F.scaled_dot_product_attention, "__wrapped_by_npu__", False):
return
F.scaled_dot_product_attention = _sdpa_npu_redirect
setattr(F.scaled_dot_product_attention, "__wrapped_by_npu__", True)
if verbose:
logger.info("[sdpa_npu_redirect] SDPA has been redirected to Ascend npu_fusion_attention when available.")

View File

@@ -80,12 +80,15 @@ def get_unsloth_peft_model(
def load_unsloth_peft_model(
config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool
config: "PretrainedConfig",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
) -> "PreTrainedModel":
r"""Load peft model with unsloth. Used in both training and inference."""
from unsloth import FastLanguageModel # type: ignore
unsloth_kwargs = _get_unsloth_kwargs(config, model_args.adapter_name_or_path[0], model_args)
unsloth_kwargs = _get_unsloth_kwargs(config, model_args.adapter_name_or_path[0], model_args, finetuning_args)
try:
if not is_trainable:
unsloth_kwargs["use_gradient_checkpointing"] = False

View File

@@ -49,7 +49,7 @@ def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") ->
try:
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
return torch.load(vhead_file, map_location="cpu", weights_only=True)
except Exception as err:
err_text = str(err)

View File

@@ -199,15 +199,67 @@ def patch_target_modules(
return target_modules
_register_composite_model(
model_type="dots_ocr",
projector_key="vision_tower.merger",
vision_model_keys=["vision_tower"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["merger"],
)
_register_composite_model(
model_type="gemma3",
)
_register_composite_model(
model_type="gemma3n",
vision_model_keys=["vision_tower", "audio_tower"],
lora_conflict_keys=["timm_model", "subsample_conv_projection"],
)
# copied from qwen2vl
_register_composite_model(
model_type="glm4v",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="glm4v_moe",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="internvl",
)
_register_composite_model(
model_type="interns1",
)
_register_composite_model(
model_type="Keye",
projector_key="mlp_AR",
vision_model_keys=["visual.vision_model.patch_embedding", "visual.vision_model.encoder"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embedding"],
)
_register_composite_model(
model_type="kimi_vl",
)
_register_composite_model(
model_type="llama4",
@@ -246,6 +298,7 @@ _register_composite_model(
lora_conflict_keys=["audio_projection_layer"],
)
_register_composite_model(
model_type="mistral3",
)
@@ -299,6 +352,33 @@ _register_composite_model(
)
_register_composite_model(
model_type="qwen3_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="qwen3_vl_moe",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["language_model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="qwen3_omni_moe_thinker",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="video_llava",
)

View File

@@ -178,6 +178,9 @@ def patch_model(
resize_embedding_layer(model, tokenizer)
if is_trainable:
if getattr(model.config, "model_type", None) == "gemma3n":
setattr(model_args, "disable_gradient_checkpointing", True)
prepare_model_for_training(model, model_args)
autocast_projector_dtype(model, model_args)
add_z3_leaf_module(model)
@@ -185,6 +188,23 @@ def patch_model(
if not model_args.use_unsloth:
print_attn_implementation(model.config)
# ======== NPU fused attention redirect: SDPA -> torch_npu.npu_fusion_attention ========
# Place after all structural modifications and before DeepSpeed/Trainer initialization;
# does not modify any Module/_parameters, safe for ZeRO-3 + offload.
try:
import os
import torch
if hasattr(torch, "npu") and torch.npu.is_available() and os.environ.get("NPU_FA_DISABLE", "0") != "1":
from .model_utils.sdpa_npu_redirect import apply_sdpa_npu_redirect
apply_sdpa_npu_redirect(verbose=not model_args.use_unsloth)
logger.info_rank0("[sdpa_npu_redirect] Enabled: SDPA will use Ascend npu_fusion_attention when available.")
except Exception as e:
logger.warning_rank0(f"[sdpa_npu_redirect] Failed to enable redirect, will keep native SDPA. Reason: {e}")
# =====================================================================================
try:
model.add_model_tags(["llama-factory"])
except Exception:
@@ -208,9 +228,23 @@ def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
if isinstance(self.pretrained_model, PeftModel):
self.pretrained_model.create_or_update_model_card(output_dir)
def get_rope_index_func(self: "AutoModelForCausalLMWithValueHead"):
if isinstance(self.pretrained_model, PeftModel):
base_model = self.pretrained_model.base_model.model
else:
base_model = self.pretrained_model
if base_model and hasattr(base_model, "get_rope_index"):
return base_model.get_rope_index
elif base_model and hasattr(base_model, "model") and hasattr(base_model.model, "get_rope_index"):
return base_model.model.get_rope_index
else:
return None
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(tie_weights, model))
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
setattr(model, "get_output_embeddings", MethodType(get_output_embeddings, model))
setattr(model, "get_rope_index", get_rope_index_func(model))
setattr(model, "create_or_update_model_card", MethodType(create_or_update_model_card, model))

View File

@@ -73,10 +73,10 @@ def fix_valuehead_checkpoint(
if safe_serialization:
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
state_dict: dict[str, torch.Tensor] = {key: f.get_tensor(key).clone() for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
state_dict: dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu", weights_only=True)
os.remove(path_to_checkpoint)
decoder_state_dict, v_head_state_dict = {}, {}

View File

@@ -78,6 +78,7 @@ class CustomDPOTrainer(DPOTrainer):
self.beta = finetuning_args.pref_beta
self.loss_type = finetuning_args.pref_loss
self.ftx_gamma = finetuning_args.pref_ftx
self.bco_gemma = finetuning_args.pref_bco_weight
self.label_smoothing = finetuning_args.dpo_label_smoothing
self.simpo_gamma = finetuning_args.simpo_gamma
self.ld_alpha = finetuning_args.ld_alpha
@@ -108,6 +109,11 @@ class CustomDPOTrainer(DPOTrainer):
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
if self.bco_gemma >= 1e-6:
from trl.trainer import RunningMoments
self.running = RunningMoments(self.accelerator)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -151,6 +157,25 @@ class CustomDPOTrainer(DPOTrainer):
simpo_loss = -F.logsigmoid(self.beta * logits)
return simpo_loss
def bco_loss(
self,
chosen_logps: "torch.Tensor",
rejected_logps: "torch.Tensor",
reference_chosen_logps: "torch.Tensor",
reference_rejected_logps: "torch.Tensor",
) -> "torch.Tensor":
chosen_logratios = chosen_logps - reference_chosen_logps
rejected_logratios = rejected_logps - reference_rejected_logps
chosen_rewards = self.beta * chosen_logratios
rejected_rewards = self.beta * rejected_logratios
rewards = torch.cat((chosen_rewards, rejected_rewards), 0).mean().detach()
self.running.update(rewards) # update baseline
delta = self.running.mean
bco_loss = -F.logsigmoid((self.beta * chosen_logratios) - delta) - F.logsigmoid(
-(self.beta * rejected_logratios - delta)
)
return bco_loss
def compute_preference_loss(
self,
policy_chosen_logps: "torch.Tensor",
@@ -174,6 +199,12 @@ class CustomDPOTrainer(DPOTrainer):
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
if self.bco_gemma > 1e-6:
bco_losses = self.bco_loss(
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
losses += bco_losses * self.bco_gemma
return losses, chosen_rewards, rejected_rewards
@override
@@ -253,6 +284,9 @@ class CustomDPOTrainer(DPOTrainer):
sft_loss = -policy_chosen_logps_avg
if self.ftx_gamma > 1e-6:
losses += self.ftx_gamma * sft_loss
if self.bco_gemma > 1e-6:
# re-weigthing for MPO
losses /= self.ftx_gamma + self.bco_gemma + 1.0
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().item()

View File

@@ -0,0 +1,171 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Optional
from ..extras import logging
if TYPE_CHECKING:
from ..hparams import ModelArguments
logger = logging.get_logger(__name__)
def create_fp8_kwargs(model_args: "ModelArguments") -> list[Any]:
"""Create AORecipeKwargs for FP8 training with HuggingFace Accelerate.
Args:
model_args: Model arguments containing FP8 configuration
Returns:
List containing AORecipeKwargs if FP8 is enabled and supported, empty list otherwise
"""
if not model_args.fp8:
return []
try:
# Check if AORecipeKwargs is available (Accelerate 1.8.0+)
from accelerate.utils import AORecipeKwargs
backend = getattr(model_args, "fp8_backend", "auto")
logger.info_rank0(f"Creating FP8 configuration with backend: {backend}")
# Create Float8LinearConfig if torchao backend is used
config = None
if backend == "torchao" or backend == "auto":
from torchao.float8 import Float8LinearConfig
# Use rowwise scaling for better performance (as recommended by torchao)
# Configure alignment requirements for FP8 kernels
config = Float8LinearConfig.from_recipe_name("rowwise")
# Enable alignment for better kernel performance
if hasattr(config, "enable_amax_init"):
config.enable_amax_init = True
if hasattr(config, "enable_pre_and_post_forward"):
config.enable_pre_and_post_forward = True
# Create module filter function to skip problematic layers
# TorchAO FP8 requires dimensions divisible by 16 for optimal kernels
def module_filter_func(module, layer_name):
# Skip embedding and output layers for numerical stability
skip_layers = ["embed", "lm_head", "output", "classifier"]
if any(skip_name in layer_name.lower() for skip_name in skip_layers):
return False
# Only convert Linear layers
if not (hasattr(module, "weight") and len(module.weight.shape) == 2):
return False
# Check dimension alignment for FP8 kernels
weight = module.weight
in_features, out_features = weight.shape[1], weight.shape[0]
# Skip layers with dimensions not divisible by 16 to avoid kernel errors
if in_features % 16 != 0 or out_features % 16 != 0:
logger.debug(
f"Skipping layer {layer_name} with dimensions {out_features}x{in_features} (not divisible by 16)"
)
return False
return True
# Map FSDP all-gather setting if available (this affects the underlying implementation)
if hasattr(model_args, "fp8_enable_fsdp_float8_all_gather") and model_args.fp8_enable_fsdp_float8_all_gather:
logger.info_rank0("FSDP float8 all-gather optimization requested")
return [AORecipeKwargs(config=config, module_filter_func=module_filter_func)]
except Exception as e:
logger.info_rank0(f"Failed to create FP8 configuration: {e}")
return []
def get_fp8_mixed_precision(model_args: "ModelArguments") -> Optional[str]:
"""Get the mixed precision setting for Accelerate when using FP8.
Args:
model_args: Model arguments containing FP8 configuration
Returns:
"fp8" if FP8 is enabled, None otherwise
"""
return "fp8" if model_args.fp8 else None
def configure_fp8_environment(model_args: "ModelArguments") -> None:
"""Configure FP8 environment for HuggingFace Accelerate.
FP8 training is handled entirely through HuggingFace Accelerate, regardless of whether
DeepSpeed or FSDP is used for distributed training. This function sets up the environment
variables and validates the FP8 configuration.
Args:
model_args: Model arguments containing FP8 configuration
"""
import os
if not model_args.fp8:
return
# Set mixed precision to fp8 for HuggingFace Accelerate
os.environ["ACCELERATE_MIXED_PRECISION"] = "fp8"
logger.info_rank0("Set ACCELERATE_MIXED_PRECISION=fp8")
# Configure FP8 backend and options
backend = getattr(model_args, "fp8_backend", "auto")
if backend != "auto":
os.environ["FP8_BACKEND"] = backend
logger.info_rank0(f"Set FP8_BACKEND={backend}")
# Create and validate FP8 recipe kwargs (for logging/debugging)
fp8_kwargs = create_fp8_kwargs(model_args)
logger.info_rank0(f"FP8 AORecipeKwargs created: {len(fp8_kwargs)} items")
# Enable FSDP float8 all-gather optimization if requested
if hasattr(model_args, "fp8_enable_fsdp_float8_all_gather") and model_args.fp8_enable_fsdp_float8_all_gather:
os.environ["FP8_ENABLE_FSDP_FLOAT8_ALL_GATHER"] = "true"
logger.info_rank0("Set FP8_ENABLE_FSDP_FLOAT8_ALL_GATHER=true")
logger.info_rank0("FP8 environment configured - all FP8 training handled by HuggingFace Accelerate")
def verify_fp8_status(accelerator, model_args: "ModelArguments") -> None:
"""Verify that FP8 training is actually working after model preparation.
Args:
accelerator: The HuggingFace Accelerator instance
model_args: Model arguments containing FP8 configuration
"""
if not model_args.fp8:
return
# Check Accelerate's FP8 status
fp8_enabled = getattr(accelerator, "fp8_enabled", False)
fp8_backend_type = getattr(accelerator, "fp8_backend", "UNKNOWN")
backend = getattr(model_args, "fp8_backend", "auto")
if backend == "torchao" or backend == "auto":
logger.info_rank0(
"FP8 training enabled with TorchAO backend. For optimal performance, "
"ensure model layer dimensions are mostly divisible by 16. "
"If you encounter issues, try fp8_backend='te' with Transformer Engine."
)
else:
logger.info_rank0(f"FP8 training enabled with {backend} backend.")
logger.info_rank0(f"Accelerate FP8 status - enabled: {fp8_enabled}, backend: {fp8_backend_type}")
if not fp8_enabled:
logger.info_rank0("WARNING: FP8 was requested but Accelerate shows fp8_enabled=False. FP8 may not be working.")

View File

@@ -390,7 +390,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
batch: dict[str, torch.Tensor] = self.prepare_model_inputs(queries, responses)
unwrapped_model: AutoModelForCausalLMWithValueHead = self.accelerator.unwrap_model(self.model)
if self.finetuning_args.reward_model_type == "lora":
if self.finetuning_args.reward_model_type in ["lora", "oft"]:
replace_model(unwrapped_model, target="reward")
reward_model = self.model
else:
@@ -399,7 +399,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context: # support bf16
values: torch.Tensor = reward_model(**batch, return_dict=True, use_cache=False)[-1]
if self.finetuning_args.reward_model_type == "lora":
if self.finetuning_args.reward_model_type in ["lora", "oft"]:
replace_model(unwrapped_model, target="default")
rewards = values.gather(dim=-1, index=(batch["attention_mask"].sum(dim=-1, keepdim=True) - 1))

View File

@@ -21,21 +21,29 @@ from typing_extensions import override
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..fp8_utils import configure_fp8_environment, verify_fp8_status
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
if TYPE_CHECKING:
from transformers import ProcessorMixin
from ...hparams import FinetuningArguments
from ...hparams import FinetuningArguments, ModelArguments
class CustomTrainer(Trainer):
r"""Inherit Trainer for custom optimizer."""
def __init__(
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
self,
finetuning_args: "FinetuningArguments",
processor: Optional["ProcessorMixin"],
model_args: Optional["ModelArguments"] = None,
**kwargs,
) -> None:
# Configure FP8 environment if enabled
if model_args is not None and model_args.fp8:
configure_fp8_environment(model_args)
if is_transformers_version_greater_than("4.46"):
kwargs["processing_class"] = kwargs.pop("tokenizer")
@@ -56,6 +64,10 @@ class CustomTrainer(Trainer):
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
# Verify FP8 status after trainer initialization (accelerator should be available)
if model_args is not None and model_args.fp8 and hasattr(self, "accelerator"):
verify_fp8_status(self.accelerator, model_args)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@@ -21,11 +21,11 @@ from typing import TYPE_CHECKING, Optional
import numpy as np
import torch
from transformers.utils import is_jieba_available, is_nltk_available
from transformers.utils import is_nltk_available
from ...extras.constants import IGNORE_INDEX
from ...extras.misc import numpify
from ...extras.packages import is_rouge_available
from ...extras.packages import is_jieba_available, is_rouge_available
if TYPE_CHECKING:

Some files were not shown because too many files have changed in this diff Show More