[feature] add support for EAFT loss (#9720)

Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
yanglele
2026-01-06 23:07:12 +08:00
committed by GitHub
parent 68119e5522
commit e944dc442c
4 changed files with 112 additions and 0 deletions

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: Qwen/Qwen2.5-0.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_eaft_loss: true
### dataset
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: qwen2.5-0_5b/full/sft_eaft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

View File

@@ -490,6 +490,14 @@ class FinetuningArguments(
default=False,
metadata={"help": "Whether to use the DFT loss."},
)
use_eaft_loss: bool = field(
default=False,
metadata={"help": "Whether to use the EAFT loss."},
)
eaft_alpha: float = field(
default=1.0,
metadata={"help": "The alpha parameter for EAFT loss to control the power of adaptive weight."},
)
freeze_vision_tower: bool = field(
default=True,
metadata={"help": "Whether ot not to freeze the vision tower in MLLM training."},

View File

@@ -87,6 +87,15 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
self.compute_loss_func = dft_loss_func
elif finetuning_args.use_eaft_loss:
from ..trainer_utils import eaft_loss_func
self.compute_loss_func = lambda outputs, labels, num_items_in_batch=None: eaft_loss_func(
outputs, labels, num_items_in_batch, finetuning_args.eaft_alpha
)
if training_args.fp8 and hasattr(self, "accelerator"): # verify FP8 status after trainer initialization
verify_fp8_status(self.accelerator, training_args)

View File

@@ -679,6 +679,61 @@ def _dft_cross_entropy(
return loss
def eaft_loss_func(outputs, labels, num_items_in_batch=None, alpha=1.0):
logits = outputs.get("logits")
if logits is None:
return outputs.get("loss", torch.tensor(0.0))
logits = logits.float()
vocab_size = logits.size(-1)
labels = torch.nn.functional.pad(labels, (0, 1), value=-100)
shift_labels = labels[..., 1:].contiguous()
logits = logits.view(-1, vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(logits.device)
loss = _eaft_cross_entropy(logits, shift_labels, num_items_in_batch, alpha)
return loss
def _eaft_cross_entropy(
source: torch.Tensor,
target: torch.Tensor,
num_items_in_batch: Optional[torch.Tensor] = None,
alpha: float = 1.0,
ignore_index: int = -100,
) -> torch.Tensor:
per_token_loss = torch.nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction="none")
valid_mask = target != ignore_index
if not valid_mask.any():
return torch.tensor(0.0, device=source.device, dtype=source.dtype)
valid_losses = per_token_loss[valid_mask]
with torch.no_grad():
source_detached = source[valid_mask].detach()
topk_val, _ = torch.topk(source_detached, k=20, dim=-1)
logsumexp_topk = torch.logsumexp(topk_val, dim=-1, keepdim=True)
log_probs_topk = topk_val - logsumexp_topk
probs_topk = torch.exp(log_probs_topk)
entropy_approx = -(probs_topk * log_probs_topk).sum(dim=-1)
entropy_term = entropy_approx / 3.0
adaptive_weight = torch.pow(entropy_term, alpha)
weighted_losses = valid_losses * adaptive_weight
if num_items_in_batch is not None:
total_loss = weighted_losses.sum()
if torch.is_tensor(num_items_in_batch):
num_items_in_batch = num_items_in_batch.to(total_loss.device)
loss = total_loss / num_items_in_batch
else:
loss = weighted_losses.mean()
return loss
def nested_detach(
tensors: Union["torch.Tensor", list["torch.Tensor"], tuple["torch.Tensor"], dict[str, "torch.Tensor"]],
clone: bool = False,