[model] add qwen2.5 vl models (#6779)

Former-commit-id: 999c7c8fe0caf6b837a1bdc2c6a24fafec327cd8
This commit is contained in:
hoshi-hiyouga 2025-01-31 03:00:29 +08:00 committed by GitHub
parent f6779b0e0c
commit e8c1979b79
8 changed files with 77 additions and 30 deletions

View File

@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-210-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-238-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
@ -73,7 +73,7 @@ Choose your path:
## Features
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
@ -105,16 +105,18 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** model.
[25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage.
[25/01/14] We supported fine-tuning the **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** and **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** models. Thank [@BUAADreamer](https://github.com/BUAADreamer)'s PR.
<details><summary>Full Changelog</summary>
[25/01/14] We supported fine-tuning the **[InternLM3](https://huggingface.co/collections/internlm/)** models. Thank [@hhaAndroid](https://github.com/hhaAndroid)'s PR.
[25/01/10] We supported fine-tuning the **[Phi-4](https://huggingface.co/microsoft/phi-4)** model.
<details><summary>Full Changelog</summary>
[24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
@ -243,7 +245,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL/QVQ](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |

View File

@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-210-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-238-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
@ -75,7 +75,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 项目特色
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
@ -107,16 +107,18 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 更新日志
[25/01/31] 我们支持了 **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** 和 **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** 模型的微调。
[25/01/15] 我们支持了 **[APOLLO](https://arxiv.org/abs/2412.05270)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。
[25/01/14] 我们支持了 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 和 **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** 模型的微调。 感谢 [@BUAADreamer](https://github.com/BUAADreamer) 的 PR.
<details><summary>展开日志</summary>
[25/01/14] 我们支持了 **[InternLM3](https://huggingface.co/collections/internlm/)** 模型的微调。感谢 [@hhaAndroid](https://github.com/hhaAndroid) 的 PR。
[25/01/10] 我们支持了 **[Phi-4](https://huggingface.co/microsoft/phi-4)** 模型的微调。
<details><summary>展开日志</summary>
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)。
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
@ -245,7 +247,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL/QVQ](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |

View File

@ -176,7 +176,10 @@ class HuggingfaceEngine(BaseEngine):
if torch.is_floating_point(value): # cast data dtype for paligemma
value = value.to(model.dtype)
gen_kwargs[key] = value.to(model.device)
if key == "second_per_grid_ts": # qwen2.5vl special case
gen_kwargs[key] = value.tolist()
else:
gen_kwargs[key] = value.to(model.device)
if getattr(model.config, "model_type", None) in ["minicpmv", "minicpmo"]:
gen_kwargs["input_ids"] = inputs

View File

@ -135,12 +135,16 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
features: Dict[str, "torch.Tensor"] = super().__call__(features)
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(
input_ids=features["input_ids"],
image_grid_thw=mm_inputs.get("image_grid_thw", None),
video_grid_thw=mm_inputs.get("video_grid_thw", None),
attention_mask=features["attention_mask"],
)
rope_index_kwargs = {
"input_ids": features["input_ids"],
"image_grid_thw": mm_inputs.get("image_grid_thw"),
"video_grid_thw": mm_inputs.get("video_grid_thw"),
"attention_mask": features["attention_mask"],
}
if "second_per_grid_ts" in mm_inputs:
rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)
if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled
cross_attention_mask = mm_inputs.pop("cross_attention_mask")

View File

@ -178,16 +178,16 @@ class BasePlugin:
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 512 * 512),
image_resolution=getattr(processor, "image_resolution", 768 * 768),
)
input_dict["images"] = images
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_resolution=getattr(processor, "video_resolution", 128 * 128),
image_resolution=getattr(processor, "video_resolution", 256 * 256),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
input_dict["videos"] = videos
@ -501,7 +501,7 @@ class MiniCPMVPlugin(BasePlugin):
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 512 * 512),
image_resolution=getattr(processor, "image_resolution", 768 * 768),
)
if "valid_image_nums_ls" in kwargs:
valid_image_nums_ls = kwargs["valid_image_nums_ls"]
@ -521,9 +521,9 @@ class MiniCPMVPlugin(BasePlugin):
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_resolution=getattr(processor, "video_resolution", 128 * 128),
image_resolution=getattr(processor, "video_resolution", 256 * 256),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
mm_inputs.update(video_inputs)
@ -610,7 +610,7 @@ class MllamaPlugin(BasePlugin):
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
imglens: List[int] = kwargs["imglens"]
images = self._regularize_images(images, image_resolution=getattr(processor, "image_resolution", 512 * 512))
images = self._regularize_images(images, image_resolution=getattr(processor, "image_resolution", 768 * 768))
batch_images = []
for image_length in imglens:
batch_images.append(images[:image_length])
@ -875,7 +875,15 @@ class Qwen2vlPlugin(BasePlugin):
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, processor)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
if "second_per_grid_ts" in getattr(image_processor, "model_input_names", []) and "video_grid_thw" in mm_inputs:
video_fps = getattr(processor, "video_fps", 2.0)
mm_inputs["second_per_grid_ts"] = [image_processor.temporal_patch_size / video_fps] * len(
mm_inputs["video_grid_thw"]
)
return mm_inputs
class VideoLlavaPlugin(BasePlugin):

View File

@ -1928,6 +1928,14 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen2.5-72B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-72B-Instruct",
},
"Qwen2.5-7B-Instruct-1M": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-7B-Instruct-1M",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-7B-Instruct-1M",
},
"Qwen2.5-14B-Instruct-1M": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-14B-Instruct-1M",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-14B-Instruct-1M",
},
"Qwen2.5-0.5B-Instruct-GPTQ-Int8": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8",
@ -2149,6 +2157,18 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/QVQ-72B-Preview",
DownloadSource.MODELSCOPE: "Qwen/QVQ-72B-Preview",
},
"Qwen2.5-VL-3B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-VL-3B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-VL-3B-Instruct",
},
"Qwen2.5-VL-7B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-VL-7B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-VL-7B-Instruct",
},
"Qwen2.5-VL-72B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen2.5-VL-72B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen2.5-VL-72B-Instruct",
},
},
template="qwen2_vl",
vision=True,

View File

@ -59,19 +59,19 @@ class ProcessorArguments:
"""
image_resolution: int = field(
default=512 * 512,
metadata={"help": "Keeps the number of pixels of image below this resolution."},
default=768 * 768,
metadata={"help": "The maximum number of pixels of image inputs."},
)
video_resolution: int = field(
default=128 * 128,
metadata={"help": "Keeps the number of pixels of video below this resolution."},
default=256 * 256,
metadata={"help": "The maximum number of pixels of video inputs."},
)
video_fps: float = field(
default=2.0,
metadata={"help": "The frames to sample per second for video inputs."},
)
video_maxlen: int = field(
default=64,
default=128,
metadata={"help": "The maximum number of sampled frames for video inputs."},
)

View File

@ -286,3 +286,11 @@ _register_composite_model(
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["model", "lm_head"],
)
_register_composite_model(
model_type="qwen2_5_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["model", "lm_head"],
)