mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	
							parent
							
								
									8c4c2e580c
								
							
						
					
					
						commit
						d0edcde4ea
					
				@ -298,7 +298,7 @@ huggingface-cli login
 | 
			
		||||
| datasets     | 2.16.0  | 2.19.2    |
 | 
			
		||||
| accelerate   | 0.30.1  | 0.30.1    |
 | 
			
		||||
| peft         | 0.11.1  | 0.11.1    |
 | 
			
		||||
| trl          | 0.9.3   | 0.9.3     |
 | 
			
		||||
| trl          | 0.8.6   | 0.9.3     |
 | 
			
		||||
 | 
			
		||||
| Optional     | Minimum | Recommend |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
 | 
			
		||||
@ -298,7 +298,7 @@ huggingface-cli login
 | 
			
		||||
| datasets     | 2.16.0  | 2.19.2    |
 | 
			
		||||
| accelerate   | 0.30.1  | 0.30.1    |
 | 
			
		||||
| peft         | 0.11.1  | 0.11.1    |
 | 
			
		||||
| trl          | 0.9.3   | 0.9.3     |
 | 
			
		||||
| trl          | 0.8.6   | 0.9.3     |
 | 
			
		||||
 | 
			
		||||
| 可选项       | 至少     | 推荐      |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
 | 
			
		||||
@ -2,7 +2,7 @@ transformers>=4.41.2
 | 
			
		||||
datasets>=2.16.0
 | 
			
		||||
accelerate>=0.30.1
 | 
			
		||||
peft>=0.11.1
 | 
			
		||||
trl>=0.9.3
 | 
			
		||||
trl>=0.8.6
 | 
			
		||||
gradio>=4.0.0
 | 
			
		||||
scipy
 | 
			
		||||
einops
 | 
			
		||||
 | 
			
		||||
@ -65,7 +65,7 @@ def check_dependencies() -> None:
 | 
			
		||||
        require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
 | 
			
		||||
        require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
 | 
			
		||||
        require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
 | 
			
		||||
        require_version("trl>=0.9.3", "To fix: pip install trl>=0.9.3")
 | 
			
		||||
        require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
 | 
			
		||||
 | 
			
		||||
@ -10,7 +10,7 @@ from trl import DPOTrainer
 | 
			
		||||
from trl.trainer import disable_dropout_in_model
 | 
			
		||||
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_ref_context
 | 
			
		||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps, get_ref_context
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -155,12 +155,7 @@ class CustomDPOTrainer(DPOTrainer):
 | 
			
		||||
 | 
			
		||||
        all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        all_logps, valid_length = self.get_batch_logps(
 | 
			
		||||
            logits=all_logits,
 | 
			
		||||
            labels=batch["labels"],
 | 
			
		||||
            is_encoder_decoder=self.is_encoder_decoder,
 | 
			
		||||
            label_pad_token_id=self.label_pad_token_id,
 | 
			
		||||
        )
 | 
			
		||||
        all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"])
 | 
			
		||||
        if self.loss_type in ["ipo", "orpo", "simpo"]:
 | 
			
		||||
            all_logps = all_logps / valid_length
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -9,7 +9,7 @@ from trl import KTOTrainer
 | 
			
		||||
from trl.trainer import disable_dropout_in_model
 | 
			
		||||
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_ref_context
 | 
			
		||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps, get_ref_context
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -98,16 +98,6 @@ class CustomKTOTrainer(KTOTrainer):
 | 
			
		||||
            output_dir = output_dir if output_dir is not None else self.args.output_dir
 | 
			
		||||
            getattr(self.processor, "image_processor").save_pretrained(output_dir)
 | 
			
		||||
 | 
			
		||||
    def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
 | 
			
		||||
        r"""
 | 
			
		||||
        Computes supervised cross-entropy loss of given labels under the given logits.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
 | 
			
		||||
        """
 | 
			
		||||
        all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
 | 
			
		||||
        return -all_logps
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
 | 
			
		||||
    ) -> Tuple["torch.Tensor", "torch.Tensor"]:
 | 
			
		||||
@ -127,28 +117,23 @@ class CustomKTOTrainer(KTOTrainer):
 | 
			
		||||
 | 
			
		||||
        logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        logps = self.get_batch_logps(
 | 
			
		||||
            logits=logits,
 | 
			
		||||
            labels=batch["{}labels".format(prefix)],
 | 
			
		||||
            average_log_prob=False,
 | 
			
		||||
            is_encoder_decoder=self.is_encoder_decoder,
 | 
			
		||||
            label_pad_token_id=self.label_pad_token_id,
 | 
			
		||||
        )
 | 
			
		||||
        return logits, logps
 | 
			
		||||
        logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)])
 | 
			
		||||
        return logps, logps / valid_length
 | 
			
		||||
 | 
			
		||||
    def concatenated_forward(
 | 
			
		||||
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
 | 
			
		||||
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
 | 
			
		||||
        target_logits, target_logps = self.forward(model, batch)
 | 
			
		||||
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
 | 
			
		||||
        target_logps, target_logps_avg = self.forward(model, batch)
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            _, kl_logps = self.forward(model, batch, prefix="kl_")
 | 
			
		||||
            kl_logps, _ = self.forward(model, batch, prefix="kl_")
 | 
			
		||||
 | 
			
		||||
        if len(target_logps) != len(batch["kto_tags"]):
 | 
			
		||||
            raise ValueError("Mismatched shape of inputs and labels.")
 | 
			
		||||
 | 
			
		||||
        chosen_logps, rejected_logps = target_logps[batch["kto_tags"]], target_logps[~batch["kto_tags"]]
 | 
			
		||||
        chosen_logits, rejected_logits = target_logits[batch["kto_tags"]], target_logits[~batch["kto_tags"]]
 | 
			
		||||
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits, kl_logps
 | 
			
		||||
        chosen_logps = target_logps[batch["kto_tags"]]
 | 
			
		||||
        rejected_logps = target_logps[~batch["kto_tags"]]
 | 
			
		||||
        chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
 | 
			
		||||
        return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg
 | 
			
		||||
 | 
			
		||||
    def compute_reference_log_probs(
 | 
			
		||||
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
 | 
			
		||||
@ -164,13 +149,9 @@ class CustomKTOTrainer(KTOTrainer):
 | 
			
		||||
            ref_context = nullcontext()
 | 
			
		||||
 | 
			
		||||
        with torch.no_grad(), ref_context:
 | 
			
		||||
            (
 | 
			
		||||
                reference_chosen_logps,
 | 
			
		||||
                reference_rejected_logps,
 | 
			
		||||
                _,
 | 
			
		||||
                _,
 | 
			
		||||
                reference_kl_logps,
 | 
			
		||||
            ) = self.concatenated_forward(ref_model, batch)
 | 
			
		||||
            reference_chosen_logps, reference_rejected_logps, reference_kl_logps, _ = self.concatenated_forward(
 | 
			
		||||
                ref_model, batch
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        return reference_chosen_logps, reference_rejected_logps, reference_kl_logps
 | 
			
		||||
 | 
			
		||||
@ -183,14 +164,9 @@ class CustomKTOTrainer(KTOTrainer):
 | 
			
		||||
        Computes the DPO loss and other metrics for the given batch of inputs for train or test.
 | 
			
		||||
        """
 | 
			
		||||
        metrics = {}
 | 
			
		||||
        (
 | 
			
		||||
            policy_chosen_logps,
 | 
			
		||||
            policy_rejected_logps,
 | 
			
		||||
            policy_chosen_logits,
 | 
			
		||||
            _,
 | 
			
		||||
            policy_kl_logps,
 | 
			
		||||
        ) = self.concatenated_forward(model, batch)
 | 
			
		||||
 | 
			
		||||
        policy_chosen_logps, policy_rejected_logps, policy_kl_logps, policy_chosen_logps_avg = (
 | 
			
		||||
            self.concatenated_forward(model, batch)
 | 
			
		||||
        )
 | 
			
		||||
        reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
 | 
			
		||||
            model, batch
 | 
			
		||||
        )
 | 
			
		||||
@ -205,8 +181,8 @@ class CustomKTOTrainer(KTOTrainer):
 | 
			
		||||
        losses = losses.nanmean()
 | 
			
		||||
 | 
			
		||||
        if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0:  # remember to rescale
 | 
			
		||||
            sft_loss = self.sft_loss(policy_chosen_logits, batch["labels"][batch["kto_tags"]])
 | 
			
		||||
            losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logits) * len(batch["labels"])
 | 
			
		||||
            sft_loss = -policy_chosen_logps_avg
 | 
			
		||||
            losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])
 | 
			
		||||
 | 
			
		||||
        num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device)
 | 
			
		||||
        num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device)
 | 
			
		||||
 | 
			
		||||
@ -1,5 +1,5 @@
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
 | 
			
		||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import Trainer
 | 
			
		||||
@ -7,6 +7,7 @@ from transformers.optimization import get_scheduler
 | 
			
		||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
 | 
			
		||||
from transformers.trainer_pt_utils import get_parameter_names
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import IGNORE_INDEX
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.packages import is_galore_available
 | 
			
		||||
from ..hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
@ -399,3 +400,24 @@ def create_custom_scheduler(
 | 
			
		||||
 | 
			
		||||
        for param in optimizer_dict.keys():
 | 
			
		||||
            param.register_post_accumulate_grad_hook(scheduler_hook)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_batch_logps(
 | 
			
		||||
    logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
 | 
			
		||||
) -> Tuple["torch.Tensor", "torch.Tensor"]:
 | 
			
		||||
    r"""
 | 
			
		||||
    Computes the log probabilities of the given labels under the given logits.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
 | 
			
		||||
        valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
 | 
			
		||||
    """
 | 
			
		||||
    if logits.shape[:-1] != labels.shape:
 | 
			
		||||
        raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")
 | 
			
		||||
 | 
			
		||||
    labels = labels[:, 1:].clone()
 | 
			
		||||
    logits = logits[:, :-1, :]
 | 
			
		||||
    loss_mask = labels != label_pad_token_id
 | 
			
		||||
    labels[labels == label_pad_token_id] = 0  # dummy token
 | 
			
		||||
    per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
 | 
			
		||||
    return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user