refactor mllm param logic

Former-commit-id: f6f630a1c96514053176abb12e35a06242e62abd
This commit is contained in:
hiyouga 2025-01-10 15:41:54 +00:00
parent b3561ae552
commit c89d17ab63
10 changed files with 198 additions and 62 deletions

View File

@ -7,6 +7,7 @@ stage: sft
do_train: true
finetuning_type: full
freeze_vision_tower: true # choices: [true, false]
freeze_multi_modal_projector: true # choices: [true, false]
train_mm_proj_only: false # choices: [true, false]
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
@ -29,7 +30,7 @@ overwrite_output_dir: true
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 30.0
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true

View File

@ -71,7 +71,7 @@ def main():
name="llamafactory",
version=get_version(),
author="hiyouga",
author_email="hiyouga" "@" "buaa.edu.cn",
author_email="hiyouga AT buaa.edu.cn",
description="Easy-to-use LLM fine-tuning framework",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@ -396,8 +396,7 @@ _register_template(
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]),
default_system=(
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
),
replace_jinja_template=True,
)

View File

@ -364,6 +364,10 @@ class FinetuningArguments(
default=True,
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
)
freeze_multi_modal_projector: bool = field(
default=True,
metadata={"help": "Whether or not to freeze the multi modal projector in MLLM training."},
)
train_mm_proj_only: bool = field(
default=False,
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
@ -398,6 +402,7 @@ class FinetuningArguments(
self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
self.galore_target: List[str] = split_arg(self.galore_target)
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
self.freeze_multi_modal_projector = self.freeze_multi_modal_projector and not self.train_mm_proj_only
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."

View File

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict
import torch
@ -202,12 +203,8 @@ def load_model(
logger.info_rank0(param_stats)
if model_args.print_param_status:
if model_args.print_param_status and int(os.getenv("LOCAL_RANK", "0")) == 0:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
print(f"name: {name}, dtype: {param.dtype}, device: {param.device}, trainable: {param.requires_grad}")
return model

View File

@ -15,6 +15,7 @@
from typing import TYPE_CHECKING, List
from ...extras import logging
from .visual import COMPOSITE_MODELS
if TYPE_CHECKING:
@ -34,18 +35,12 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
forbidden_modules.add("output_layer")
elif model_type == "internlm2":
forbidden_modules.add("output")
elif model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
forbidden_modules.add("multi_modal_projector")
elif model_type == "qwen2_vl":
forbidden_modules.add("merger")
if freeze_vision_tower:
if model_type == "mllama":
forbidden_modules.add("vision_model")
elif model_type == "qwen2_vl":
forbidden_modules.add("visual")
else:
forbidden_modules.add("vision_tower")
if model_type in COMPOSITE_MODELS:
forbidden_modules.add(COMPOSITE_MODELS[model_type].projector_key)
if freeze_vision_tower and model_type in COMPOSITE_MODELS:
forbidden_modules.update(COMPOSITE_MODELS[model_type].vision_model_keys)
module_names = set()
for name, module in model.named_modules():

View File

@ -15,7 +15,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, List, Sequence, Set, Tuple, Union
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, Tuple, Union
import torch
import transformers
@ -35,6 +36,40 @@ logger = logging.get_logger(__name__)
transformers_logger = transformers.utils.logging.get_logger(__name__)
@dataclass
class CompositeModel:
model_type: str
projector_key: str
vision_model_keys: List[str]
language_model_keys: List[str]
def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
for key in self.projector_key.split("."):
module = getattr(module, key)
return module
COMPOSITE_MODELS: Dict[str, "CompositeModel"] = {}
def _register_composite_model(
model_type: str,
projector_key: Optional[str] = None,
vision_model_keys: Optional[List[str]] = None,
language_model_keys: Optional[List[str]] = None,
):
projector_key = projector_key or "multi_modal_projector"
vision_model_keys = vision_model_keys or ["vision_tower"]
language_model_keys = language_model_keys or ["language_model"]
COMPOSITE_MODELS[model_type] = CompositeModel(
model_type=model_type,
projector_key=projector_key,
vision_model_keys=vision_model_keys,
language_model_keys=language_model_keys,
)
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
def __init__(self, config: "LlavaConfig") -> None:
super().__init__()
@ -92,10 +127,8 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
if getattr(model, "quantization_method", None):
model_type = getattr(model.config, "model_type", None)
if model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
elif model_type == "qwen2_vl":
mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
if model_type in COMPOSITE_MODELS:
mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
else:
return
@ -107,8 +140,7 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
r"""
Patches VLMs before loading them.
"""
model_type = getattr(config, "model_type", None)
if model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
# required for ds zero3 and valuehead models
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
@ -123,25 +155,21 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
"""
model_type = getattr(config, "model_type", None)
forbidden_modules = set()
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
if model_type in COMPOSITE_MODELS:
if finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
forbidden_modules.update(vision_model_keys)
if finetuning_args.freeze_multi_modal_projector:
projector_key = COMPOSITE_MODELS[model_type].projector_key
logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
forbidden_modules.add(projector_key)
if finetuning_args.train_mm_proj_only:
forbidden_modules.add("language_model")
elif model_type == "mllama":
if finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_model")
if finetuning_args.train_mm_proj_only:
forbidden_modules.add("language_model")
elif model_type == "qwen2_vl":
if finetuning_args.train_mm_proj_only:
forbidden_modules.update({"visual.patch_embed", "visual.blocks", "model", "lm_head"})
elif finetuning_args.freeze_vision_tower:
forbidden_modules.add("visual")
language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
forbidden_modules.update(language_model_keys)
return forbidden_modules
@ -190,18 +218,57 @@ def patch_target_modules(
model_type = getattr(config, "model_type", None)
vit_model_type = getattr(getattr(config, "vision_config", None), "model_type", None)
if finetuning_args.freeze_vision_tower:
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
elif model_type == "mllama":
return "^(?!.*vision_model).*(?:{}).*".format("|".join(target_modules))
elif model_type == "qwen2_vl":
return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))
if model_type in COMPOSITE_MODELS:
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
vision_model_keys = "|".join(vision_model_keys)
target_modules = "|".join(target_modules)
return f"^(?!.*{vision_model_keys}).*(?:{target_modules}).*"
else:
return target_modules
else:
if model_type == "qwen2_vl":
if model_type == "qwen2_vl": # avoid attaching lora to Conv3D layer
return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules))
elif vit_model_type == "pixtral":
return "^(?!.*patch_conv).*(?:{}).*".format("|".join(target_modules))
else:
return target_modules
_register_composite_model(
model_type="llava",
)
_register_composite_model(
model_type="llava_next",
)
_register_composite_model(
model_type="llava_next_video",
)
_register_composite_model(
model_type="paligemma",
)
_register_composite_model(
model_type="video_llava",
)
_register_composite_model(
model_type="mllama",
vision_model_keys=["vision_model"],
)
_register_composite_model(
model_type="qwen2_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["model", "lm_head"],
)

View File

@ -100,8 +100,7 @@ def test_encode_multiturn(use_fast: bool):
)
answer_str_1 = "I am fine!<|eot_id|>"
prompt_str_2 = (
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str_2 = "很高兴认识你!<|eot_id|>"
_check_tokenization(

View File

@ -14,6 +14,7 @@
import os
import pytest
import torch
from llamafactory.extras.misc import get_current_device
@ -39,16 +40,11 @@ TRAIN_ARGS = {
}
def test_checkpointing_enable():
model = load_train_model(disable_gradient_checkpointing=False, **TRAIN_ARGS)
@pytest.mark.parametrize("disable_gradient_checkpointing", [False, True])
def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
model = load_train_model(disable_gradient_checkpointing=disable_gradient_checkpointing, **TRAIN_ARGS)
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
assert getattr(module, "gradient_checkpointing") is True
def test_checkpointing_disable():
model = load_train_model(disable_gradient_checkpointing=True, **TRAIN_ARGS)
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
assert getattr(module, "gradient_checkpointing") is False
assert getattr(module, "gradient_checkpointing") != disable_gradient_checkpointing
def test_unsloth_gradient_checkpointing():

View File

@ -0,0 +1,77 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from transformers import AutoConfig, AutoModelForVision2Seq
from llamafactory.hparams import FinetuningArguments, ModelArguments
from llamafactory.model.adapter import init_adapter
@pytest.mark.parametrize(
"freeze_vision_tower,freeze_multi_modal_projector,train_mm_proj_only",
[
(False, False, False),
(False, True, False),
(True, False, False),
(True, True, False),
(True, False, True),
],
)
def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, train_mm_proj_only: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments(
finetuning_type="full",
freeze_vision_tower=freeze_vision_tower,
freeze_multi_modal_projector=freeze_multi_modal_projector,
train_mm_proj_only=train_mm_proj_only,
)
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
with torch.device("meta"):
model = AutoModelForVision2Seq.from_config(config)
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
for name, param in model.named_parameters():
if any(key in name for key in ["visual.patch_embed", "visual.blocks"]):
assert param.requires_grad != freeze_vision_tower
elif "visual.merger" in name:
assert param.requires_grad != freeze_multi_modal_projector
else:
assert param.requires_grad != train_mm_proj_only
@pytest.mark.parametrize("freeze_vision_tower", [False, True])
def test_visual_lora(freeze_vision_tower: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower)
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
with torch.device("meta"):
model = AutoModelForVision2Seq.from_config(config)
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
trainable_params, frozen_params = set(), set()
for name, param in model.named_parameters():
if param.requires_grad:
trainable_params.add(name)
else:
frozen_params.add(name)
if freeze_vision_tower:
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params
else:
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params
assert "merger" not in trainable_params
assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params