mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
453 lines
16 KiB
Python
453 lines
16 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import asdict, dataclass, field
|
|
from typing import Any, Dict, List, Literal, Optional
|
|
|
|
|
|
@dataclass
|
|
class FreezeArguments:
|
|
r"""
|
|
Arguments pertaining to the freeze (partial-parameter) training.
|
|
"""
|
|
|
|
freeze_trainable_layers: int = field(
|
|
default=2,
|
|
metadata={
|
|
"help": (
|
|
"The number of trainable layers for freeze (partial-parameter) fine-tuning. "
|
|
"Positive numbers mean the last n layers are set as trainable, "
|
|
"negative numbers mean the first n layers are set as trainable."
|
|
)
|
|
},
|
|
)
|
|
freeze_trainable_modules: str = field(
|
|
default="all",
|
|
metadata={
|
|
"help": (
|
|
"Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
|
|
"Use commas to separate multiple modules. "
|
|
"Use `all` to specify all the available modules."
|
|
)
|
|
},
|
|
)
|
|
freeze_extra_modules: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Name(s) of modules apart from hidden layers to be set as trainable "
|
|
"for freeze (partial-parameter) fine-tuning. "
|
|
"Use commas to separate multiple modules."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class LoraArguments:
|
|
r"""
|
|
Arguments pertaining to the LoRA training.
|
|
"""
|
|
|
|
additional_target: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Name(s) of modules apart from LoRA layers to be set as trainable "
|
|
"and saved in the final checkpoint. "
|
|
"Use commas to separate multiple modules."
|
|
)
|
|
},
|
|
)
|
|
lora_alpha: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
|
|
)
|
|
lora_dropout: float = field(
|
|
default=0.0,
|
|
metadata={"help": "Dropout rate for the LoRA fine-tuning."},
|
|
)
|
|
lora_rank: int = field(
|
|
default=8,
|
|
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
|
|
)
|
|
lora_target: str = field(
|
|
default="all",
|
|
metadata={
|
|
"help": (
|
|
"Name(s) of target modules to apply LoRA. "
|
|
"Use commas to separate multiple modules. "
|
|
"Use `all` to specify all the linear modules."
|
|
)
|
|
},
|
|
)
|
|
loraplus_lr_ratio: Optional[float] = field(
|
|
default=None,
|
|
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
|
|
)
|
|
loraplus_lr_embedding: float = field(
|
|
default=1e-6,
|
|
metadata={"help": "LoRA plus learning rate for lora embedding layers."},
|
|
)
|
|
use_rslora: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
|
|
)
|
|
use_dora: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
|
|
)
|
|
pissa_init: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to initialize a PiSSA adapter."},
|
|
)
|
|
pissa_iter: int = field(
|
|
default=16,
|
|
metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
|
|
)
|
|
pissa_convert: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
|
|
)
|
|
create_new_adapter: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class RLHFArguments:
|
|
r"""
|
|
Arguments pertaining to the PPO, DPO and KTO training.
|
|
"""
|
|
|
|
pref_beta: float = field(
|
|
default=0.1,
|
|
metadata={"help": "The beta parameter in the preference loss."},
|
|
)
|
|
pref_ftx: float = field(
|
|
default=0.0,
|
|
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
|
)
|
|
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
|
|
default="sigmoid",
|
|
metadata={"help": "The type of DPO loss to use."},
|
|
)
|
|
dpo_label_smoothing: float = field(
|
|
default=0.0,
|
|
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
|
|
)
|
|
kto_chosen_weight: float = field(
|
|
default=1.0,
|
|
metadata={"help": "The weight factor of the desirable losses in KTO training."},
|
|
)
|
|
kto_rejected_weight: float = field(
|
|
default=1.0,
|
|
metadata={"help": "The weight factor of the undesirable losses in KTO training."},
|
|
)
|
|
simpo_gamma: float = field(
|
|
default=0.5,
|
|
metadata={"help": "The target reward margin term in SimPO loss."},
|
|
)
|
|
ppo_buffer_size: int = field(
|
|
default=1,
|
|
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
|
|
)
|
|
ppo_epochs: int = field(
|
|
default=4,
|
|
metadata={"help": "The number of epochs to perform in a PPO optimization step."},
|
|
)
|
|
ppo_score_norm: bool = field(
|
|
default=False,
|
|
metadata={"help": "Use score normalization in PPO training."},
|
|
)
|
|
ppo_target: float = field(
|
|
default=6.0,
|
|
metadata={"help": "Target KL value for adaptive KL control in PPO training."},
|
|
)
|
|
ppo_whiten_rewards: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
|
|
)
|
|
ref_model: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the reference model used for the PPO or DPO training."},
|
|
)
|
|
ref_model_adapters: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the adapters of the reference model."},
|
|
)
|
|
ref_model_quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the reference model."},
|
|
)
|
|
reward_model: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the reward model used for the PPO training."},
|
|
)
|
|
reward_model_adapters: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the adapters of the reward model."},
|
|
)
|
|
reward_model_quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the reward model."},
|
|
)
|
|
reward_model_type: Literal["lora", "full", "api"] = field(
|
|
default="lora",
|
|
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class GaloreArguments:
|
|
r"""
|
|
Arguments pertaining to the GaLore algorithm.
|
|
"""
|
|
|
|
use_galore: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
|
|
)
|
|
galore_target: str = field(
|
|
default="all",
|
|
metadata={
|
|
"help": (
|
|
"Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
|
|
"Use `all` to specify all the linear modules."
|
|
)
|
|
},
|
|
)
|
|
galore_rank: int = field(
|
|
default=16,
|
|
metadata={"help": "The rank of GaLore gradients."},
|
|
)
|
|
galore_update_interval: int = field(
|
|
default=200,
|
|
metadata={"help": "Number of steps to update the GaLore projection."},
|
|
)
|
|
galore_scale: float = field(
|
|
default=0.25,
|
|
metadata={"help": "GaLore scaling coefficient."},
|
|
)
|
|
galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
|
|
default="std",
|
|
metadata={"help": "Type of GaLore projection."},
|
|
)
|
|
galore_layerwise: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class BAdamArgument:
|
|
r"""
|
|
Arguments pertaining to the BAdam optimizer.
|
|
"""
|
|
|
|
use_badam: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the BAdam optimizer."},
|
|
)
|
|
badam_mode: Literal["layer", "ratio"] = field(
|
|
default="layer",
|
|
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
|
|
)
|
|
badam_start_block: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The starting block index for layer-wise BAdam."},
|
|
)
|
|
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
|
|
default="ascending",
|
|
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
|
|
)
|
|
badam_switch_interval: Optional[int] = field(
|
|
default=50,
|
|
metadata={
|
|
"help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
|
|
},
|
|
)
|
|
badam_update_ratio: float = field(
|
|
default=0.05,
|
|
metadata={"help": "The ratio of the update for ratio-wise BAdam."},
|
|
)
|
|
badam_mask_mode: Literal["adjacent", "scatter"] = field(
|
|
default="adjacent",
|
|
metadata={
|
|
"help": (
|
|
"The mode of the mask for BAdam optimizer. "
|
|
"`adjacent` means that the trainable parameters are adjacent to each other, "
|
|
"`scatter` means that trainable parameters are randomly choosed from the weight."
|
|
)
|
|
},
|
|
)
|
|
badam_verbose: int = field(
|
|
default=0,
|
|
metadata={
|
|
"help": (
|
|
"The verbosity level of BAdam optimizer. "
|
|
"0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class SwanLabArguments:
|
|
use_swanlab: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the SwanLab (an experiment tracking and visualization tool)."},
|
|
)
|
|
swanlab_project: str = field(
|
|
default="llamafactory",
|
|
metadata={"help": "The project name in SwanLab."},
|
|
)
|
|
swanlab_workspace: str = field(
|
|
default=None,
|
|
metadata={"help": "The workspace name in SwanLab."},
|
|
)
|
|
swanlab_run_name: str = field(
|
|
default=None,
|
|
metadata={"help": "The experiment name in SwanLab."},
|
|
)
|
|
swanlab_mode: Literal["cloud", "local"] = field(
|
|
default="cloud",
|
|
metadata={"help": "The mode of SwanLab."},
|
|
)
|
|
swanlab_api_key: str = field(
|
|
default=None,
|
|
metadata={"help": "The API key for SwanLab."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class FinetuningArguments(
|
|
FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument, SwanLabArguments
|
|
):
|
|
r"""
|
|
Arguments pertaining to which techniques we are going to fine-tuning with.
|
|
"""
|
|
|
|
pure_bf16: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
|
|
)
|
|
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
|
|
default="sft",
|
|
metadata={"help": "Which stage will be performed in training."},
|
|
)
|
|
finetuning_type: Literal["lora", "freeze", "full"] = field(
|
|
default="lora",
|
|
metadata={"help": "Which fine-tuning method to use."},
|
|
)
|
|
use_llama_pro: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
|
|
)
|
|
use_adam_mini: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use the Adam-mini optimizer."},
|
|
)
|
|
freeze_vision_tower: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
|
|
)
|
|
freeze_multi_modal_projector: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to freeze the multi modal projector in MLLM training."},
|
|
)
|
|
train_mm_proj_only: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
|
|
)
|
|
compute_accuracy: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to compute the token-level accuracy at evaluation."},
|
|
)
|
|
disable_shuffling: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to disable the shuffling of the training set."},
|
|
)
|
|
plot_loss: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to save the training loss curves."},
|
|
)
|
|
include_effective_tokens_per_second: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to compute effective tokens per second."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
def split_arg(arg):
|
|
if isinstance(arg, str):
|
|
return [item.strip() for item in arg.split(",")]
|
|
return arg
|
|
|
|
self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules)
|
|
self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules)
|
|
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
|
|
self.lora_target: List[str] = split_arg(self.lora_target)
|
|
self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
|
|
self.galore_target: List[str] = split_arg(self.galore_target)
|
|
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
|
|
self.freeze_multi_modal_projector = self.freeze_multi_modal_projector and not self.train_mm_proj_only
|
|
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
|
|
|
|
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
|
|
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
|
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
|
|
|
if self.stage == "ppo" and self.reward_model is None:
|
|
raise ValueError("`reward_model` is necessary for PPO training.")
|
|
|
|
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
|
|
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
|
|
|
|
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
|
|
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")
|
|
|
|
if self.use_llama_pro and self.finetuning_type == "full":
|
|
raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.")
|
|
|
|
if self.finetuning_type == "lora" and (self.use_galore or self.use_badam):
|
|
raise ValueError("Cannot use LoRA with GaLore or BAdam together.")
|
|
|
|
if self.use_galore and self.use_badam:
|
|
raise ValueError("Cannot use GaLore with BAdam together.")
|
|
|
|
if self.pissa_init and (self.stage in ["ppo", "kto"] or self.use_ref_model):
|
|
raise ValueError("Cannot use PiSSA for current training stage.")
|
|
|
|
if self.train_mm_proj_only and self.finetuning_type != "full":
|
|
raise ValueError("`train_mm_proj_only` is only valid for full training.")
|
|
|
|
if self.finetuning_type != "lora":
|
|
if self.loraplus_lr_ratio is not None:
|
|
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
|
|
|
|
if self.use_rslora:
|
|
raise ValueError("`use_rslora` is only valid for LoRA training.")
|
|
|
|
if self.use_dora:
|
|
raise ValueError("`use_dora` is only valid for LoRA training.")
|
|
|
|
if self.pissa_init:
|
|
raise ValueError("`pissa_init` is only valid for LoRA training.")
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
args = asdict(self)
|
|
args = {k: f"<{k.upper()}>" if k.endswith("api_key") else v for k, v in args.items()}
|
|
return args
|