mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 06:12:50 +08:00
update
Former-commit-id: ef6e14550dd76810285cee9c268590d1d9423e54
This commit is contained in:
parent
7ad5b5c088
commit
bf2b8df540
@ -16,6 +16,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
|
||||
@ -85,9 +86,13 @@ def run_dpo(
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
train_result.metrics['effective_tokens_per_sec'] = effi_token_num * train_result.metrics['epoch'] / train_result.metrics['train_runtime']
|
||||
train_result.metrics["effective_tokens_per_sec"] = (
|
||||
effi_token_num * train_result.metrics["epoch"] / train_result.metrics["train_runtime"]
|
||||
)
|
||||
if dist.is_initialized():
|
||||
train_result.metrics['effective_tokens_per_sec'] = train_result.metrics['effective_tokens_per_sec'] / dist.get_world_size()
|
||||
train_result.metrics["effective_tokens_per_sec"] = (
|
||||
train_result.metrics["effective_tokens_per_sec"] / dist.get_world_size()
|
||||
)
|
||||
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
|
@ -16,6 +16,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
|
||||
@ -66,9 +67,9 @@ def run_sft(
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False # important for multimodal dataset
|
||||
|
||||
effi_token_num = 0.0
|
||||
effective_token_num = 0.0
|
||||
for data in dataset_module["train_dataset"]:
|
||||
effi_token_num += len(data["input_ids"])
|
||||
effective_token_num += len(data["input_ids"])
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
@ -99,9 +100,13 @@ def run_sft(
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
train_result.metrics['effective_tokens_per_sec'] = effi_token_num * train_result.metrics['epoch'] / train_result.metrics['train_runtime']
|
||||
train_result.metrics["effective_tokens_per_sec"] = (
|
||||
effective_token_num * train_result.metrics["epoch"] / train_result.metrics["train_runtime"]
|
||||
)
|
||||
if dist.is_initialized():
|
||||
train_result.metrics['effective_tokens_per_sec'] = train_result.metrics['effective_tokens_per_sec'] / dist.get_world_size()
|
||||
train_result.metrics["effective_tokens_per_sec"] = (
|
||||
train_result.metrics["effective_tokens_per_sec"] / dist.get_world_size()
|
||||
)
|
||||
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
@ -132,4 +137,3 @@ def run_sft(
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user