mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-27 09:10:35 +08:00
[misc] fix accelerator (#9661)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@@ -1,93 +0,0 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from llamafactory.v1.accelerator.helper import ReduceOp, all_reduce, is_torch_cuda_available, is_torch_npu_available
|
||||
from llamafactory.v1.utils.utils import find_available_port
|
||||
|
||||
|
||||
def _dist_worker(rank, world_size):
|
||||
if is_torch_cuda_available():
|
||||
backend = "nccl"
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(rank)
|
||||
elif is_torch_npu_available():
|
||||
backend = "hccl"
|
||||
device = torch.device(f"npu:{rank}")
|
||||
torch.npu.set_device(rank)
|
||||
else:
|
||||
backend = "gloo"
|
||||
device = torch.device("cpu")
|
||||
|
||||
dist.init_process_group(
|
||||
backend=backend,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce SUM
|
||||
# --------------------
|
||||
y = torch.tensor(rank + 1.0, device=device)
|
||||
y_sum = all_reduce(y.clone(), op=ReduceOp.SUM)
|
||||
assert y_sum.item() == 3.0
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce MEAN
|
||||
# --------------------
|
||||
y_mean = all_reduce(y.clone(), op=ReduceOp.MEAN)
|
||||
assert y_mean.item() == pytest.approx(1.5)
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce MAX
|
||||
# --------------------
|
||||
y_max = all_reduce(y.clone(), op=ReduceOp.MAX)
|
||||
assert y_max.item() == 2.0
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(2)
|
||||
def test_distributed_ops(monkeypatch):
|
||||
monkeypatch.setenv("MASTER_ADDR", "127.0.0.1")
|
||||
monkeypatch.setenv("MASTER_PORT", str(find_available_port()))
|
||||
WORLD_SIZE = 2
|
||||
mp.spawn(
|
||||
_dist_worker,
|
||||
args=(WORLD_SIZE,),
|
||||
nprocs=WORLD_SIZE,
|
||||
join=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(4)
|
||||
def test_required_multi():
|
||||
# test require_distributed mark ok
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(999)
|
||||
def test_required_invalid():
|
||||
# test require_distributed mark not ok,
|
||||
raise RuntimeError(
|
||||
"this case should not be run, please check whether the require_distributed mark implementation is correct"
|
||||
)
|
||||
@@ -12,15 +12,48 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from llamafactory.v1.accelerator.helper import ReduceOp
|
||||
from llamafactory.v1.accelerator.interface import DistributedInterface
|
||||
from llamafactory.v1.utils.env import find_available_port
|
||||
from llamafactory.v1.utils.pytest import dist_env
|
||||
|
||||
|
||||
def test_distributed_interface():
|
||||
DistributedInterface()
|
||||
assert DistributedInterface.get_rank() == int(os.getenv("RANK", "0"))
|
||||
assert DistributedInterface.get_world_size() == int(os.getenv("WORLD_SIZE", "1"))
|
||||
assert DistributedInterface.get_local_rank() == int(os.getenv("LOCAL_RANK", "0"))
|
||||
assert DistributedInterface.get_local_world_size() == int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
||||
def _all_reduce_tests(local_rank: int, world_size: int, master_port: int):
|
||||
with dist_env(local_rank, world_size, master_port):
|
||||
rank = DistributedInterface().get_rank()
|
||||
world_size = DistributedInterface().get_world_size()
|
||||
assert world_size == 2
|
||||
|
||||
y_sum = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.SUM)
|
||||
assert y_sum == pytest.approx(3.0)
|
||||
|
||||
y_mean = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.MEAN)
|
||||
assert y_mean == pytest.approx(1.5)
|
||||
|
||||
y_max = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.MAX)
|
||||
assert y_max == pytest.approx(2.0)
|
||||
|
||||
z = DistributedInterface().all_gather(rank + 1.0)
|
||||
assert z == pytest.approx([1.0, 2.0])
|
||||
|
||||
z = DistributedInterface().broadcast(rank + 1.0)
|
||||
assert z == pytest.approx(1.0)
|
||||
|
||||
|
||||
def test_all_device():
|
||||
assert DistributedInterface().get_rank() == int(os.getenv("RANK", "0"))
|
||||
assert DistributedInterface().get_world_size() == int(os.getenv("WORLD_SIZE", "1"))
|
||||
assert DistributedInterface().get_local_rank() == int(os.getenv("LOCAL_RANK", "0"))
|
||||
assert DistributedInterface().get_local_world_size() == int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cuda", "npu"])
|
||||
@pytest.mark.require_distributed(2)
|
||||
def test_multi_device():
|
||||
master_port = find_available_port()
|
||||
mp.spawn(_all_reduce_tests, args=(2, master_port), nprocs=2)
|
||||
|
||||
Reference in New Issue
Block a user