mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-27 09:10:35 +08:00
[misc] fix accelerator (#9661)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@@ -18,19 +18,17 @@ Contains shared fixtures, pytest configuration, and custom markers.
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from pytest import Config, Item
|
||||
from pytest import Config, FixtureRequest, Item, MonkeyPatch
|
||||
|
||||
from llamafactory.extras.misc import get_current_device, get_device_count, is_env_enabled
|
||||
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||
from llamafactory.train.test_utils import patch_valuehead_model
|
||||
|
||||
|
||||
try:
|
||||
CURRENT_DEVICE = get_current_device().type # cpu | cuda | npu
|
||||
except Exception:
|
||||
CURRENT_DEVICE = "cpu"
|
||||
CURRENT_DEVICE = get_current_device().type
|
||||
|
||||
|
||||
def pytest_configure(config: Config):
|
||||
@@ -66,26 +64,27 @@ def _handle_runs_on(items: list[Item]):
|
||||
|
||||
def _handle_slow_tests(items: list[Item]):
|
||||
"""Skip slow tests unless RUN_SLOW is enabled."""
|
||||
if not is_env_enabled("RUN_SLOW", "0"):
|
||||
if not is_env_enabled("RUN_SLOW"):
|
||||
skip_slow = pytest.mark.skip(reason="slow test (set RUN_SLOW=1 to run)")
|
||||
for item in items:
|
||||
if "slow" in item.keywords:
|
||||
item.add_marker(skip_slow)
|
||||
|
||||
|
||||
def _get_visible_devices_env():
|
||||
def _get_visible_devices_env() -> Optional[str]:
|
||||
"""Return device visibility env var name."""
|
||||
if CURRENT_DEVICE == "cuda":
|
||||
return "CUDA_VISIBLE_DEVICES"
|
||||
if CURRENT_DEVICE == "npu":
|
||||
elif CURRENT_DEVICE == "npu":
|
||||
return "ASCEND_RT_VISIBLE_DEVICES"
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def _handle_device_visibility(items: list[Item]):
|
||||
"""Handle device visibility based on test markers."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if env_key is None or CURRENT_DEVICE == "cpu":
|
||||
if env_key is None or CURRENT_DEVICE in ("cpu", "mps"):
|
||||
return
|
||||
|
||||
# Parse visible devices
|
||||
@@ -121,7 +120,7 @@ def pytest_collection_modifyitems(config: Config, items: list[Item]):
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _manage_distributed_env(request, monkeypatch):
|
||||
def _manage_distributed_env(request: FixtureRequest, monkeypatch: MonkeyPatch) -> None:
|
||||
"""Set environment variables for distributed tests if specific devices are requested."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if not env_key:
|
||||
@@ -131,8 +130,7 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
old_value = os.environ.get(env_key)
|
||||
|
||||
marker = request.node.get_closest_marker("require_distributed")
|
||||
if marker:
|
||||
# Distributed test
|
||||
if marker: # distributed test
|
||||
required = marker.args[0] if marker.args else 2
|
||||
specific_devices = marker.args[1] if len(marker.args) > 1 else None
|
||||
|
||||
@@ -142,8 +140,7 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
devices_str = ",".join(str(i) for i in range(required))
|
||||
|
||||
monkeypatch.setenv(env_key, devices_str)
|
||||
else:
|
||||
# Non-distributed test
|
||||
else: # non-distributed test
|
||||
if old_value:
|
||||
visible_devices = [v for v in old_value.split(",") if v != ""]
|
||||
monkeypatch.setenv(env_key, visible_devices[0] if visible_devices else "0")
|
||||
|
||||
@@ -42,7 +42,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_feedback_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -51,7 +51,7 @@ def _convert_sharegpt_to_openai(messages: list[dict[str, str]]) -> list[dict[str
|
||||
return new_messages
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_pairwise_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -18,7 +18,7 @@ import pytest
|
||||
from llamafactory.data.processor.processor_utils import infer_seqlen
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"test_input,test_output",
|
||||
[
|
||||
|
||||
@@ -42,7 +42,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_supervised_single_turn(num_samples: int):
|
||||
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
|
||||
@@ -62,7 +62,7 @@ def test_supervised_single_turn(num_samples: int):
|
||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [8])
|
||||
def test_supervised_multi_turn(num_samples: int):
|
||||
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
|
||||
@@ -76,7 +76,7 @@ def test_supervised_multi_turn(num_samples: int):
|
||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_train_on_prompt(num_samples: int):
|
||||
train_dataset = load_dataset_module(
|
||||
@@ -91,7 +91,7 @@ def test_supervised_train_on_prompt(num_samples: int):
|
||||
assert train_dataset["labels"][index] == ref_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_mask_history(num_samples: int):
|
||||
train_dataset = load_dataset_module(
|
||||
|
||||
@@ -46,7 +46,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_unsupervised_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -29,7 +29,7 @@ from llamafactory.model import load_tokenizer
|
||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_base_collator():
|
||||
model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"})
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
@@ -73,7 +73,7 @@ def test_base_collator():
|
||||
assert batch_input[k].eq(torch.tensor(expected_input[k])).all()
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_multimodal_collator():
|
||||
model_args, data_args, *_ = get_infer_args(
|
||||
{"model_name_or_path": "Qwen/Qwen2-VL-2B-Instruct", "template": "qwen2_vl"}
|
||||
|
||||
@@ -20,7 +20,7 @@ from llamafactory.data.parser import DatasetAttr
|
||||
from llamafactory.hparams import DataArguments
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_alpaca_converter():
|
||||
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
|
||||
data_args = DataArguments()
|
||||
@@ -41,7 +41,7 @@ def test_alpaca_converter():
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_sharegpt_converter():
|
||||
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
|
||||
data_args = DataArguments()
|
||||
|
||||
@@ -38,19 +38,19 @@ TOOLS = [
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_empty_formatter():
|
||||
formatter = EmptyFormatter(slots=["\n"])
|
||||
assert formatter.apply() == ["\n"]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_string_formatter():
|
||||
formatter = StringFormatter(slots=["<s>", "Human: {{content}}\nAssistant:"])
|
||||
assert formatter.apply(content="Hi") == ["<s>", "Human: Hi\nAssistant:"]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}", "</s>"], tool_format="default")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -60,7 +60,7 @@ def test_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}", "</s>"], tool_format="default")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -71,7 +71,7 @@ def test_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
assert formatter.apply(content=json.dumps(TOOLS)) == [
|
||||
@@ -90,14 +90,14 @@ def test_default_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
result = """Action: test_tool\nAction Input: {"foo": "bar", "size": 10}"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
result = (
|
||||
@@ -110,14 +110,14 @@ def test_default_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}"], tool_format="glm4")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
assert formatter.apply(content=tool_calls) == ["""tool_name\n{"foo": "bar", "size": 10}"""]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="glm4")
|
||||
assert formatter.apply(content=json.dumps(TOOLS)) == [
|
||||
@@ -128,14 +128,14 @@ def test_glm4_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="glm4")
|
||||
result = """test_tool\n{"foo": "bar", "size": 10}\n"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -144,7 +144,7 @@ def test_llama3_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -155,7 +155,7 @@ def test_llama3_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
date = datetime.now().strftime("%d %b %Y")
|
||||
@@ -169,14 +169,14 @@ def test_llama3_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
result = """{"name": "test_tool", "parameters": {"foo": "bar", "size": 10}}\n"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
result = (
|
||||
@@ -189,7 +189,7 @@ def test_llama3_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", "</s>"], tool_format="mistral")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -199,7 +199,7 @@ def test_mistral_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", "</s>"], tool_format="mistral")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -211,7 +211,7 @@ def test_mistral_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
wrapped_tool = {"type": "function", "function": TOOLS[0]}
|
||||
@@ -220,14 +220,14 @@ def test_mistral_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
result = """{"name": "test_tool", "arguments": {"foo": "bar", "size": 10}}"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
result = (
|
||||
@@ -240,7 +240,7 @@ def test_mistral_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -249,7 +249,7 @@ def test_qwen_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -260,7 +260,7 @@ def test_qwen_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
wrapped_tool = {"type": "function", "function": TOOLS[0]}
|
||||
@@ -274,14 +274,14 @@ def test_qwen_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
result = """<tool_call>\n{"name": "test_tool", "arguments": {"foo": "bar", "size": 10}}\n</tool_call>"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
result = (
|
||||
|
||||
@@ -40,21 +40,21 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_train_only():
|
||||
dataset_module = load_dataset_module(**TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
assert dataset_module.get("eval_dataset") is None
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_val_size():
|
||||
dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
assert dataset_module.get("eval_dataset") is not None
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_eval_data():
|
||||
dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
|
||||
@@ -179,7 +179,7 @@ def _check_plugin(
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_base_plugin():
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA3)
|
||||
base_plugin = get_mm_plugin(name="base")
|
||||
@@ -187,7 +187,7 @@ def test_base_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
|
||||
def test_gemma3_plugin():
|
||||
@@ -210,7 +210,7 @@ def test_gemma3_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.52.0"), reason="Requires transformers>=4.52.0")
|
||||
def test_internvl_plugin():
|
||||
image_seqlen = 256
|
||||
@@ -229,7 +229,7 @@ def test_internvl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.51.0"), reason="Requires transformers>=4.51.0")
|
||||
def test_llama4_plugin():
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA4)
|
||||
@@ -251,7 +251,7 @@ def test_llama4_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_plugin():
|
||||
image_seqlen = 576
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
|
||||
@@ -265,7 +265,7 @@ def test_llava_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_next_plugin():
|
||||
image_seqlen = 1176
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
|
||||
@@ -279,7 +279,7 @@ def test_llava_next_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_next_video_plugin():
|
||||
image_seqlen = 1176
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
@@ -293,7 +293,7 @@ def test_llava_next_video_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
def test_paligemma_plugin():
|
||||
image_seqlen = 256
|
||||
@@ -313,7 +313,7 @@ def test_paligemma_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
|
||||
def test_pixtral_plugin():
|
||||
image_slice_height, image_slice_width = 2, 2
|
||||
@@ -336,7 +336,7 @@ def test_pixtral_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.52.0"), reason="Requires transformers>=4.52.0")
|
||||
def test_qwen2_omni_plugin():
|
||||
image_seqlen, audio_seqlen = 4, 2
|
||||
@@ -367,7 +367,7 @@ def test_qwen2_omni_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen2_vl_plugin():
|
||||
image_seqlen = 4
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
|
||||
@@ -384,7 +384,7 @@ def test_qwen2_vl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.57.0"), reason="Requires transformers>=4.57.0")
|
||||
def test_qwen3_vl_plugin():
|
||||
frame_seqlen = 1
|
||||
@@ -406,7 +406,7 @@ def test_qwen3_vl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
|
||||
def test_video_llava_plugin():
|
||||
image_seqlen = 256
|
||||
|
||||
@@ -89,7 +89,7 @@ def _check_template(
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_encode_oneturn(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -105,7 +105,7 @@ def test_encode_oneturn(use_fast: bool):
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_encode_multiturn(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -127,7 +127,7 @@ def test_encode_multiturn(use_fast: bool):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||
@@ -154,7 +154,7 @@ def test_reasoning_encode_oneturn(use_fast: bool, cot_messages: bool, enable_thi
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||
@@ -184,7 +184,7 @@ def test_reasoning_encode_multiturn(use_fast: bool, cot_messages: bool, enable_t
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_jinja_template(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -195,7 +195,7 @@ def test_jinja_template(use_fast: bool):
|
||||
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_ollama_modelfile():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||
@@ -213,14 +213,14 @@ def test_ollama_modelfile():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_get_stop_token_ids():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_gemma_template(use_fast: bool):
|
||||
@@ -234,7 +234,7 @@ def test_gemma_template(use_fast: bool):
|
||||
_check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_gemma2_template(use_fast: bool):
|
||||
@@ -248,7 +248,7 @@ def test_gemma2_template(use_fast: bool):
|
||||
_check_template("google/gemma-2-2b-it", "gemma2", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_llama3_template(use_fast: bool):
|
||||
@@ -262,7 +262,7 @@ def test_llama3_template(use_fast: bool):
|
||||
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Llama 4 has no slow tokenizer."))]
|
||||
)
|
||||
@@ -284,7 +284,7 @@ def test_llama4_template(use_fast: bool):
|
||||
pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken.")),
|
||||
],
|
||||
)
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_phi4_template(use_fast: bool):
|
||||
prompt_str = (
|
||||
f"<|im_start|>user<|im_sep|>{MESSAGES[0]['content']}<|im_end|>"
|
||||
@@ -296,7 +296,7 @@ def test_phi4_template(use_fast: bool):
|
||||
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_qwen2_5_template(use_fast: bool):
|
||||
@@ -311,7 +311,7 @@ def test_qwen2_5_template(use_fast: bool):
|
||||
_check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
||||
@@ -331,7 +331,7 @@ def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
||||
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, use_fast, messages=messages)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_parse_llama3_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, token=HF_TOKEN)
|
||||
template = parse_template(tokenizer)
|
||||
@@ -345,7 +345,7 @@ def test_parse_llama3_template():
|
||||
assert template.default_system == ""
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
def test_parse_qwen_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", token=HF_TOKEN)
|
||||
@@ -358,7 +358,7 @@ def test_parse_qwen_template():
|
||||
assert template.default_system == "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
def test_parse_qwen3_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", token=HF_TOKEN)
|
||||
|
||||
@@ -37,13 +37,13 @@ MESSAGES = [
|
||||
EXPECTED_RESPONSE = "_rho"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_chat():
|
||||
chat_model = ChatModel(INFER_ARGS)
|
||||
assert chat_model.chat(MESSAGES)[0].response_text == EXPECTED_RESPONSE
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_stream_chat():
|
||||
chat_model = ChatModel(INFER_ARGS)
|
||||
response = ""
|
||||
|
||||
@@ -39,7 +39,7 @@ MESSAGES = [
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cuda"])
|
||||
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
|
||||
def test_chat():
|
||||
r"""Test the SGLang engine's basic chat functionality."""
|
||||
@@ -49,7 +49,7 @@ def test_chat():
|
||||
print(response.response_text)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cuda"])
|
||||
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
|
||||
def test_stream_chat():
|
||||
r"""Test the SGLang engine's streaming chat functionality."""
|
||||
|
||||
@@ -49,7 +49,7 @@ INFER_ARGS = {
|
||||
OS_NAME = os.getenv("OS_NAME", "")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"stage,dataset",
|
||||
[
|
||||
@@ -66,7 +66,7 @@ def test_run_exp(stage: str, dataset: str):
|
||||
assert os.path.exists(output_dir)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_export():
|
||||
export_dir = os.path.join("output", "llama3_export")
|
||||
export_model({"export_dir": export_dir, **INFER_ARGS})
|
||||
|
||||
@@ -17,7 +17,7 @@ import pytest
|
||||
from llamafactory.eval.template import get_eval_template
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_eval_template_en():
|
||||
support_set = [
|
||||
{
|
||||
@@ -56,7 +56,7 @@ def test_eval_template_en():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_eval_template_zh():
|
||||
support_set = [
|
||||
{
|
||||
|
||||
@@ -25,7 +25,6 @@ TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
|
||||
UNUSED_TOKEN = "<|UNUSED_TOKEN|>"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("special_tokens", [False, True])
|
||||
def test_add_tokens(special_tokens: bool):
|
||||
if special_tokens:
|
||||
|
||||
@@ -39,7 +39,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(is_transformers_version_greater_than("4.48"), reason="Attention refactor.")
|
||||
def test_attention():
|
||||
attention_available = ["disabled"]
|
||||
|
||||
@@ -39,7 +39,6 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("disable_gradient_checkpointing", [False, True])
|
||||
def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
|
||||
model = load_train_model(disable_gradient_checkpointing=disable_gradient_checkpointing, **TRAIN_ARGS)
|
||||
@@ -47,14 +46,12 @@ def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
|
||||
assert getattr(module, "gradient_checkpointing") != disable_gradient_checkpointing
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_unsloth_gradient_checkpointing():
|
||||
model = load_train_model(use_unsloth_gc=True, **TRAIN_ARGS)
|
||||
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
|
||||
assert module._gradient_checkpointing_func.__self__.__name__ == "UnslothGradientCheckpointing"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_upcast_layernorm():
|
||||
model = load_train_model(upcast_layernorm=True, **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -62,7 +59,6 @@ def test_upcast_layernorm():
|
||||
assert param.dtype == torch.float32
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_upcast_lmhead_output():
|
||||
model = load_train_model(upcast_lmhead_output=True, **TRAIN_ARGS)
|
||||
inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device())
|
||||
|
||||
@@ -24,7 +24,6 @@ from llamafactory.model.model_utils.misc import find_expanded_modules
|
||||
HF_TOKEN = os.getenv("HF_TOKEN")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
def test_expanded_modules():
|
||||
config = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
|
||||
@@ -18,7 +18,6 @@ import torch
|
||||
from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize(
|
||||
"attention_mask,golden_seq_lens",
|
||||
[
|
||||
|
||||
@@ -23,7 +23,6 @@ from llamafactory.hparams import FinetuningArguments, ModelArguments
|
||||
from llamafactory.model.adapter import init_adapter
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("freeze_vision_tower", (False, True))
|
||||
@pytest.mark.parametrize("freeze_multi_modal_projector", (False, True))
|
||||
@pytest.mark.parametrize("freeze_language_model", (False, True))
|
||||
@@ -49,7 +48,6 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
|
||||
assert param.requires_grad != freeze_language_model
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("freeze_vision_tower,freeze_language_model", ((False, False), (False, True), (True, False)))
|
||||
def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
|
||||
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
|
||||
@@ -82,7 +80,6 @@ def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
|
||||
assert (merger_param_name in trainable_params) is False
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_visual_model_save_load():
|
||||
# check VLM's state dict: https://github.com/huggingface/transformers/pull/38385
|
||||
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
|
||||
|
||||
@@ -30,14 +30,12 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_base():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
|
||||
def test_valuehead():
|
||||
model = load_infer_model(add_valuehead=True, **INFER_ARGS)
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
|
||||
@@ -44,7 +43,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_train_all_modules():
|
||||
model = load_train_model(freeze_trainable_layers=1, **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -56,7 +54,6 @@ def test_freeze_train_all_modules():
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_train_extra_modules():
|
||||
model = load_train_model(freeze_trainable_layers=1, freeze_extra_modules="embed_tokens,lm_head", **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -68,7 +65,6 @@ def test_freeze_train_extra_modules():
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
for param in model.parameters():
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
|
||||
@@ -44,7 +43,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_full_train():
|
||||
model = load_train_model(**TRAIN_ARGS)
|
||||
for param in model.parameters():
|
||||
@@ -52,7 +50,6 @@ def test_full_train():
|
||||
assert param.dtype == torch.float32
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_full_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
for param in model.parameters():
|
||||
|
||||
@@ -55,35 +55,30 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_qv_modules():
|
||||
model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS)
|
||||
linear_modules, _ = check_lora_model(model)
|
||||
assert linear_modules == {"q_proj", "v_proj"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_all_modules():
|
||||
model = load_train_model(lora_target="all", **TRAIN_ARGS)
|
||||
linear_modules, _ = check_lora_model(model)
|
||||
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_extra_modules():
|
||||
model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS)
|
||||
_, extra_modules = check_lora_model(model)
|
||||
assert extra_modules == {"embed_tokens", "lm_head"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_old_adapters():
|
||||
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_new_adapters():
|
||||
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
|
||||
@@ -92,7 +87,6 @@ def test_lora_train_new_adapters():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
|
||||
def test_lora_train_valuehead():
|
||||
model = load_train_model(add_valuehead=True, **TRAIN_ARGS)
|
||||
@@ -103,7 +97,6 @@ def test_lora_train_valuehead():
|
||||
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"])
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
|
||||
|
||||
@@ -49,7 +49,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(reason="PiSSA initialization is not stable in different platform.")
|
||||
def test_pissa_train():
|
||||
model = load_train_model(**TRAIN_ARGS)
|
||||
@@ -57,7 +56,6 @@ def test_pissa_train():
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(reason="Known connection error.")
|
||||
def test_pissa_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
|
||||
@@ -59,7 +59,6 @@ class DataCollatorWithVerbose(DataCollatorWithPadding):
|
||||
return {k: v[:, :1] for k, v in batch.items()} # truncate input length
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("disable_shuffling", [False, True])
|
||||
def test_shuffle(disable_shuffling: bool):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
runs_on = pytest.mark.runs_on
|
||||
@@ -1,2 +1,2 @@
|
||||
# change if test fails or cache is outdated
|
||||
0.9.4.104
|
||||
0.9.4.105
|
||||
|
||||
Reference in New Issue
Block a user