mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
[data] fix qwen2.5 omni plugin (#7573)
* align key with qwen2vl * nit && change scripts
This commit is contained in:
parent
11997593be
commit
80f8d037d0
@ -19,7 +19,7 @@ import shutil
|
|||||||
|
|
||||||
import fire
|
import fire
|
||||||
from peft import PeftModel
|
from peft import PeftModel
|
||||||
from transformers import AutoModel, AutoProcessor, AutoTokenizer
|
from transformers import AutoModel, AutoProcessor, AutoTokenizer, Qwen2_5OmniThinkerForConditionalGeneration
|
||||||
|
|
||||||
|
|
||||||
def merge_lora(
|
def merge_lora(
|
||||||
@ -31,7 +31,7 @@ def merge_lora(
|
|||||||
):
|
):
|
||||||
"""Load the original model, tokenizer, and processor configuration, merge the LoRA weights.
|
"""Load the original model, tokenizer, and processor configuration, merge the LoRA weights.
|
||||||
|
|
||||||
for a specified submodule, and save the final merged model along with its configurations.
|
For a specified submodule, and save the final merged model along with its configurations.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
base_model_path (str): Path to the original model directory.
|
base_model_path (str): Path to the original model directory.
|
||||||
@ -86,5 +86,47 @@ def merge_lora(
|
|||||||
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
|
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
|
||||||
|
|
||||||
|
|
||||||
|
def save_full_model(
|
||||||
|
saved_thinker_path: str,
|
||||||
|
base_model_path: str,
|
||||||
|
save_path: str,
|
||||||
|
extra_file: str = "spk_dict.pt",
|
||||||
|
):
|
||||||
|
"""Load the saved thinker module and the original model, replace the thinker in the original model.
|
||||||
|
|
||||||
|
Then save the complete model along with its tokenizer and processor configuration.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
saved_thinker_path (str): Path to the saved thinker weights.
|
||||||
|
base_model_path (str): Directory path of the original model.
|
||||||
|
save_path (str): Directory where the final complete model will be saved.
|
||||||
|
extra_file (str): Name of the extra file to be copied (default: "spk_dict.pt").
|
||||||
|
"""
|
||||||
|
# Load the thinker module
|
||||||
|
thinker = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(saved_thinker_path, device_map="cpu")
|
||||||
|
# Load the original model
|
||||||
|
base_model = AutoModel.from_pretrained(base_model_path, device_map="cpu")
|
||||||
|
# Replace the thinker module in the original model
|
||||||
|
base_model.thinker = thinker
|
||||||
|
|
||||||
|
# Load the processor and tokenizer
|
||||||
|
processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Save the complete model along with its configurations
|
||||||
|
base_model.save_pretrained(save_path)
|
||||||
|
tokenizer.save_pretrained(save_path)
|
||||||
|
processor.save_pretrained(save_path)
|
||||||
|
print(f"Complete model, tokenizer, and processor configuration have been saved to {save_path}.")
|
||||||
|
|
||||||
|
source_file = os.path.join(base_model_path, extra_file)
|
||||||
|
target_file = os.path.join(save_path, extra_file)
|
||||||
|
if os.path.exists(source_file):
|
||||||
|
shutil.copy(source_file, target_file)
|
||||||
|
print(f"File '{extra_file}' copied from {base_model_path} to {save_path}.")
|
||||||
|
else:
|
||||||
|
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
fire.Fire(merge_lora)
|
fire.Fire({"save_full": save_full_model, "merge_lora": merge_lora})
|
@ -203,7 +203,6 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
|||||||
|
|
||||||
delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1)
|
delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1)
|
||||||
# avoid conflict
|
# avoid conflict
|
||||||
rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid", None)
|
|
||||||
new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs)
|
new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs)
|
||||||
features["position_ids"], features["rope_deltas"] = (
|
features["position_ids"], features["rope_deltas"] = (
|
||||||
new_position_ids.clone(),
|
new_position_ids.clone(),
|
||||||
|
@ -1405,7 +1405,7 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
|
|||||||
video_grid_thw[num_video_tokens][2] // self.image_processor.merge_size,
|
video_grid_thw[num_video_tokens][2] // self.image_processor.merge_size,
|
||||||
)
|
)
|
||||||
.flatten()
|
.flatten()
|
||||||
* mm_inputs["video_second_per_grid"][num_video_tokens]
|
* mm_inputs["second_per_grid_ts"][num_video_tokens]
|
||||||
* 25 # FIXME hardcode of position_id_per_seconds=25
|
* 25 # FIXME hardcode of position_id_per_seconds=25
|
||||||
).long()
|
).long()
|
||||||
t_ntoken_per_chunk = 50 # FIXME hardcode: [25 * 2]
|
t_ntoken_per_chunk = 50 # FIXME hardcode: [25 * 2]
|
||||||
|
@ -157,7 +157,7 @@ def load_model(
|
|||||||
model = load_class.from_config(config, trust_remote_code=model_args.trust_remote_code)
|
model = load_class.from_config(config, trust_remote_code=model_args.trust_remote_code)
|
||||||
else:
|
else:
|
||||||
model = load_class.from_pretrained(**init_kwargs)
|
model = load_class.from_pretrained(**init_kwargs)
|
||||||
if load_class is AutoModelForTextToWaveform:
|
if getattr(model.config, "model_type", None) == "qwen2_5_omni":
|
||||||
model = model.thinker # use part of Omni model
|
model = model.thinker # use part of Omni model
|
||||||
|
|
||||||
if model_args.mixture_of_depths == "convert":
|
if model_args.mixture_of_depths == "convert":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user