[model] add gpt oss (#8826)

This commit is contained in:
Yaowei Zheng 2025-08-06 05:56:46 +08:00 committed by GitHub
parent 48615ddb07
commit 706b3e5ee7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 97 additions and 16 deletions

View File

@ -72,6 +72,11 @@ jobs:
run: |
python -m pip install "transformers==${{ matrix.transformers }}"
- name: Install transformers to avoid mac os ci errors
if: ${{ matrix.os == 'macos-13' }}
run: |
python -m pip install "transformers<=4.51.3"
- name: Cache files
id: hf-hub-cache
uses: actions/cache@v4

View File

@ -118,10 +118,14 @@ Choose your path:
## Changelog
[25/07/02] We supported fine-tuning the **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** model. Please install transformers from **main** branch to use.
[25/08/06] We supported fine-tuning the **[GPT-OSS](https://github.com/openai/gpt-oss)** models. See [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) to get started.
[25/07/02] We supported fine-tuning the **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** model.
[25/04/28] We supported fine-tuning the **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** model family.
<details><summary>Full Changelog</summary>
[25/04/21] We supported the **[Muon](https://github.com/KellerJordan/Muon)** optimizer. See [examples](examples/README.md) for usage. Thank [@tianshijing](https://github.com/tianshijing)'s PR.
[25/04/16] We supported fine-tuning the **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** model. See [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) to get started.
@ -130,8 +134,6 @@ Choose your path:
[25/04/06] We supported fine-tuning the **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** model. See [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) to get started.
<details><summary>Full Changelog</summary>
[25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started.
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
@ -268,6 +270,7 @@ Choose your path:
| [GLM-4.1V](https://huggingface.co/zai-org)* | 9B | glm4v |
| [GLM-4.5](https://huggingface.co/zai-org)* | 106B/355B | glm4_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |

View File

@ -120,10 +120,14 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 更新日志
[25/07/02] 我们支持了 **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** 模型的微调。请安装 transformers 的 main 分支版本以使用。
[25/08/06] 我们支持了 **[GPT-OSS](https://github.com/openai/gpt-oss)** 模型的微调。查看 [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) 以使用。
[25/07/02] 我们支持了 **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** 模型的微调。
[25/04/28] 我们支持了 **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** 系列模型的微调。
<details><summary>展开日志</summary>
[25/04/21] 我们支持了 **[Muon](https://github.com/KellerJordan/Muon)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@tianshijing](https://github.com/tianshijing) 的 PR。
[25/04/16] 我们支持了 **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** 模型的微调。查看 [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) 以使用。
@ -132,8 +136,6 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
[25/04/06] 我们支持了 **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** 模型的微调。查看 [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) 以使用。
<details><summary>展开日志</summary>
[25/03/31] 我们支持了 **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** 模型的微调。查看 [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) 以使用。
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
@ -270,6 +272,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [GLM-4.1V](https://huggingface.co/zai-org)* | 9B | glm4v |
| [GLM-4.5](https://huggingface.co/zai-org)* | 106B/355B | glm4_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |

View File

@ -0,0 +1,46 @@
### model
model_name_or_path: openai/gpt-oss-20b
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: gpt
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/gpt-20b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@ -1,6 +1,5 @@
# core deps
transformers>=4.49.0,<=4.52.4,!=4.52.0; sys_platform != 'darwin'
transformers>=4.49.0,<=4.51.3,!=4.52.0; sys_platform == 'darwin'
transformers>=4.49.0,<=4.55.0,!=4.52.0
datasets>=2.16.0,<=3.6.0
accelerate>=1.3.0,<=1.7.0
peft>=0.14.0,<=0.15.2

View File

@ -1063,6 +1063,16 @@ register_template(
)
register_template(
name="gpt",
format_user=StringFormatter(slots=["<|start|>user<|message|>{{content}}<|end|><|start|>assistant"]),
format_assistant=StringFormatter(slots=["{{content}}<|end|>"]),
format_system=StringFormatter(slots=["<|start|>system<|message|>{{content}}<|end|>"]),
default_system="You are ChatGPT, a large language model trained by OpenAI.",
efficient_eos=True,
)
register_template(
name="granite3",
format_user=StringFormatter(

View File

@ -945,6 +945,21 @@ register_model_group(
)
register_model_group(
models={
"GPT-OSS-20B-Thinking": {
DownloadSource.DEFAULT: "openai/gpt-oss-20b",
DownloadSource.MODELSCOPE: "openai/gpt-oss-20b",
},
"GPT-OSS-120B-Thinking": {
DownloadSource.DEFAULT: "openai/gpt-oss-120b",
DownloadSource.MODELSCOPE: "openai/gpt-oss-120b",
},
},
template="gpt",
)
register_model_group(
models={
"Granite-3.0-1B-A400M-Base": {

View File

@ -18,7 +18,7 @@
import gc
import os
import socket
from typing import TYPE_CHECKING, Any, Literal, Union
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
import torch
import torch.distributed as dist
@ -94,7 +94,7 @@ def check_version(requirement: str, mandatory: bool = False) -> None:
def check_dependencies() -> None:
r"""Check the version of the required packages."""
check_version("transformers>=4.49.0,<=4.52.4,!=4.52.0")
check_version("transformers>=4.49.0,<=4.55.0")
check_version("datasets>=2.16.0,<=3.6.0")
check_version("accelerate>=1.3.0,<=1.7.0")
check_version("peft>=0.14.0,<=0.15.2")
@ -211,9 +211,9 @@ def has_tokenized_data(path: "os.PathLike") -> bool:
return os.path.isdir(path) and len(os.listdir(path)) > 0
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
def infer_optim_dtype(model_dtype: Optional["torch.dtype"]) -> "torch.dtype":
r"""Infer the optimal dtype according to the model_dtype and device compatibility."""
if _is_bf16_available and model_dtype == torch.bfloat16:
if _is_bf16_available and (model_dtype == torch.bfloat16 or model_dtype is None):
return torch.bfloat16
elif _is_fp16_available:
return torch.float16

View File

@ -156,10 +156,10 @@ def load_model(
if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs)
else:
if type(config) in AutoModelForVision2Seq._model_mapping.keys(): # image-text
load_class = AutoModelForVision2Seq
elif type(config) in AutoModelForImageTextToText._model_mapping.keys(): # image-text
if type(config) in AutoModelForImageTextToText._model_mapping.keys(): # image-text
load_class = AutoModelForImageTextToText
elif type(config) in AutoModelForVision2Seq._model_mapping.keys(): # image-text
load_class = AutoModelForVision2Seq
elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys(): # audio-text
load_class = AutoModelForSeq2SeqLM
elif type(config) in AutoModelForTextToWaveform._model_mapping.keys(): # audio hack for qwen2_5_omni

View File

@ -1,2 +1,2 @@
# change if test fails or cache is outdated
0.9.4.100
0.9.4.101